US 278 Corridor
 Independent Review

Beaufort County, South Carolina

September 23, 2023

Beaufort County
100 Ribaut Road Beaufort, SC 29902

1 Town Center Court
Hilton Head Island, SC 29928

DRAFT

TRANSPORTATIDN ENGINEERS+PLANNERS

Prepared by:
Shawn Leight, P.E., PTOE, PTP
Nirav Patel, P.E., PTOE
Mike Albin, AICP
Joanne Martin, P.E., PTOE
CBB Transportation Engineers + Planners 12400 Olive Boulevard, Suite 430
St. Louis, MO 63141

Table of Contents
Major Study Find ings 1
Introduction 7
Background 7
Study Purpose 9
Review of Demographic and Trip Data 10
US Census Workforce J oumey to Work Data 11
SCDOTCount Station Data 13
Public Transportation 16
Palmetto Breeze 16
Sea PinesTrolley 18
CBB Observations and Site Visits 19
Bic ycle Network. 24
Hilton Head Island Bicycle Network 24
Collected Data 27
Peak Hour Tuming Movement Counts. 27
7-Day Midblock Counts. 27
Travel Time Data 31
Queue Observations 32
Moming Peak Hour Observations 32
Evening Peak hour Observations 36
Traffic Modeling Software. 40
VISSIM Model Development. 40
Geometric Data 40
Signal-C ontrolled Intersections. 40
Stop-Controlled Intersections 40
Speed Data 41
Vehicle Routing 41
Vehic le Composition 41
Vehicle Inputs. 41
Driver Beha vior Pa rameters 42
Simulation Setting and Random Seed Variation. 42
Calibration and Visual Validation. 42
Calibration Criteria 42
Calibration Process 43
Calibration Results 44
Travel Time and Speed 44
US 278 Bridge Throughput. 45
Visual Inspection of the Model Operations 45
2023 No-Build AM Queues. 45
2023 No-Build PM Queues 51
Study Procedures. 55
Analysis Sc ena rios 56
Near-Term (2023) Traffic Operations 57
2023 No-Build Operations. 57
2023 SCDOTPreferred Altemative Operations 68
2023 Gumtree Road and Sea Pines Improvements Operations 78
2023 No Widening Through Stoney Community Operations 88
Traffic Forecasts 98
Future Growth Analysis. 103
AM Peak Period Future Growth Analysis. 103
PM Peak Period Future Growth Analysis. 107
Extending the Life of Improved US 278 111
Summit County Case Study 111
TDM Solutions for Hilton Head Island 113
Acknowledgment 117
List of Figures
Figure 1: Typical Eastbound Moming Peak Traffic Congestion near Bluffton 2
Figure 2: Typical Northbound Evening Peak Traffic Congestion on Cross Island Parkway 2
Figure 3: Example VISSIM Screenshot at Cross Isla nd Parkway Interchange 3
Figure 4: Typic al Eastbound Moming Traffic Queues at Gumtree Road 4
Figure 5: Typic al Southbound Moming Traffic Queues NearTarget Road from Sea Pines Circle 4
Figure 6: The Breeze Trolley System Map 5
Figure 7: SCDOTProject Area 7
Figure 8: CBB Study Area 10
Figure 9: Hilton Head Island Visitors by Month 11
Figure 10: US CensusJ oumey to work Data for Hilton Head Workforce 12
Figure 11: Moming Work Vehicles on Eastbound US 278 Heading to Hilton Head Island 13
Figure 12: 2022 US 278 Daily Traffic Volumes 14
Figure 13: 2022 US 278 AM Peak Hour Eastbound Traffic Volumes. 14
Figure 14: 2022 US 278 PM Peak Hour Westbound Traffic Volumes. 15
Figure 15: Palmetto Breeze system Map 17
Figure 16: Palmetto Breeze Bus Routes. 18
Figure 17: Sea Pines Trolley Network. 19
Figure 18: Bus Parking; Palmetto Breeze Ma intenance Facility and Transfer Center 20
Figure 19: Bus stop in Old Town Bluffton 21
Figure 20: Mall signage indic ating a "buscheck-in" but no On-Site Signage for Transit Service 22
Figure 21: Palmetto Breeze vehicles, including a Bluffton Breeze bus (farleft) and commuter buses. 22
Figure 22: Transit app Screenshots: BreezePass (farleft) a nd CatchTheBreeze (Center/right) 23
Figure 23: Typic al Bic yc le Facilities on Hilton Head Island 24
Figure 24: Hilton Head Island Public Pathways Map 25
Figure 25: Travel Time Routes. 31
Figure 26: Eastbound US 278 Queue at Squire Pope, reaching Blue Heron Point Road 32
Figure 27: Eastbound US 278 queue from Squire Pope Road reaching Bluffton Parkway interchange. 33
Figure 28: Eastbound Business US 278 approach queue at Gumtree Road 33
Figure 29: Southbound Palmetto Bay Road queue at Sea Pines Circle, reaching past Target Road 34
Figure 30: Southbound Palmetto Bay Road approach queue at Target Road 34
Figure 31: Eastbound Greenwood Drive approach queue 34
Figure 32: School Drop-Off queue along Wilbom Road 35
Figure 33: Drop-Off queue, reaching Westbound Business US 278 35
Figure 34: Westbound US 278 approach queue at Squire Pope Road 36
Figure 35: Westbound US 278 Queue from Squire Pope Road reaching Spanish Wells Road 36
Figure 36: Westbound US 278 queue from Squire Pope Road, reaching Museum Street. 37
Figure 37: Westbound US 278 from Squire Pope Road near Indigo Run Drive 37
Figure 38: Northbound Spanish Wells Road approach queue at US 278 38
Figure 39: Northbound Gumtree Road approach queue at Business US 278 38
Figure 40: Northbound Museum Street approach queue at Business US 278. 39
Figure 41: Northbound Cross Island Parkway queue, near the Gumtree Road Off-Ramp 39
Figure 42: Northbound Cross Island Parkway queue, near the Spanish Wells Road intersection. 39
Figure 43: FHWA Model Calibration Criteria 43
Figure 44: Eastbound US 278 Queue at Bluffton Parkway Interchange - 2023 No-Build AM 46
Figure 45: Eastbound US 278 Queue Between Squire Pope Rd \& Crosstree Dr - 2023 No-Build AM 47
Figure 46: Ea stbound Business US 278 Approach Queue at Gumtree Road - 2023 No-Build AM 48
Figure 47: Southbound Palmetto Bay Road Queue at Sea Pines Circle - 2023 No-Build AM 48
Figure 48: Southbound Palmetto Bay Road Approach Queue at Target Road - 2023 No-Build AM 49
Figure 49: Eastbound Greenwood Drive Approach Queue at Sea Pines Circle - 2023 No-Build AM 49
Figure 50: Drop-off queue on northbound Wilbom Road near Business US 278-2023 No-Build AM 50
Figure 51: Westbound US 278 Approach Queue at Spanish Wells Road - 2023 No-Build PM 51
Figure 52: Westbound Business US 278 queues between Gumtree \& Indigo Run - 2023 No-Build PM 52
Figure 53: Northbound Gumtree Road approach queue at Business US 278-2023 No-Build PM 53
Figure 54: Westbound US 278 queue from Spanish Wells Rd on Cross Island Pkwy- 2023 No-Build PM 53
Figure 55: Northbound Pope Avenue queue at Sea Pines Circle - 2023 No-Build PM 54
Figure 56: Westbound Business US 278 a pproach queue at Sea Pines Circle - 2023 No-Build PM 54
Figure 57: VISSIM Link Speeds at Eastbound US 278 Lane Drop - 2023 No-Build AM 59
Figure 58: VISSIM Link Speeds at the Bluffton Parkway Interchange - 2023 No-Build AM 60
Figure 59: VISSIM Link Speeds at the Squire Pope Road Intersection - 2023 No-Build AM 60
Figure 60: VISSIM Link Speeds at the Gumtree Road Intersection - 2023 No-Build AM 61
Figure 61: VISSIM Link Speeds at the Sea Pines Circle - 2023 No-Build AM 61
Figure 62: VISSIM Speeds on Westbound US 278- Squire Pope Rd to J a rvis Park Rd-2023 No-Build PM. 62
Figure 63: VISSIM Link Speeds at the Sea Pines Circle - 2023 No-Build PM 63
Figure 64: Eastbound US 278 Queue from Gumtree - 2023 SCDOTPreferred Altemative AM 77
Figure 65: Potential Roadway Improvements at Gumtree Road 78
Figure 66: VISSIM Speeds Ea stbound US 278-Squire Pope to Gumtree-2023 Gumtree/Sea Pines AM 83
Figure 67: Parcel Map of the Stoney Community 88
Figure 68: potential roadway geometry of 4 lanes within Stoney community 89
Figure 69: VISSIM Speeds at Squire Pope- 2023 No Widening Through Stoney Community AM 91
Figure 70: VISSIM Speeds-Crosstree to Gateway-2023 No Widening Through Stoney Community AM 92
Figure 71: VISSIM Speeds on Westbound US 278- Squire Pope to J a rvis Park- 2023 No Widening ThroughStoney Community PM93
Figure 72: US 278 (East of J enkins Isla nd Road) Historic al and Forecasted AADT 99
Figure 73: Eastbound US 278 AM Hourly Peak Period Throughput Volume 104
Figure 74: AM Peak Period Unmet Demand 105
Figure 75: Ea stbound US 278 AM Peak Period Travel Time 105
Figure 76: Ea stbound US 278 AM Speed Heat Map 106
Figure 77: Westbound US 278 PM Hourly Peak Period Throughput 108
Figure 78: PM Peak Period Unmet Demand 109
Figure 79: Westbound US 278 PM Peak Period Travel Time 109
Figure 80: Westbound US 278 PM Speed Heat Map 110
Figure 81: Summit Sta ge Route Map 112
List of Tables
Table 1: Field and 2023 No-Build VISSIM Travel Time Comparison 44
Table 2: Field and 2023 No-Build VISSIM Speed Companison 44
Table 3: Field and 2023 No-Build VISSIM US 278 Bridge Throughput 45
Table 4: Level of Service Thresholds. 55
Table 5: 2023 No-Build VISSIM Travel Times 57
Table 6: Eastbound US 278 \& Bluffton Parkway Merge Operations- 2023 No-Build AM 57
Table 7: 2023 No-Build VISSIM Network Results 59
Table 8: 2023 SC DOTVISSIM Travel Times 68
Table 9: 2023 SC DOTVISSIM Network Results 69
Table 10: 2023 Gumtree Road and Sea Pines Improvements VISSIM Travel Times 79
Table 11: Eastbound US 278 \& Bluffton Parkwa y Operations - AM Peak Hour 80
Table 12: Intersection Operating Conditions (VISSIM) 80
Table 13: Intersection Operating Conditions (VISSIM) 80
Table 14: Intersection Operating Conditions (VISSIM) 81
Table 15: 2023 Gumtree Road a nd Sea Pines Improvements VISSIM Network Results 82
Table 16: 2023 No Widening Through Stoney Community VISSIM Travel Times 89
Table 17: 2023 No Widening Through Stoney Community VISSIM Network Results 90
Table 18: Hilton Head Island TDM Recommendations 116
List of Exhibits
Exhibit 1: 2023 No-Build Traffic Volumes 29
Exhibit 2: 2023 No-Build VISSIM Results (AM Peak Hour) 64
Exhibit 3: 2023 No-Build VISSIM Results (PM Peak Hour) 66
Exhibit 4: 2023 Build Traffic Volumes 71
Exhibit 5: 2023 SCDOTVISSIM Results (AM Peak Hour) 73
Exhibit 6: 2023 SCDOTVISSIM Results (PM Peak Hour) 75
Exhibit 7: 2023 Gumtree Road and Sea Pines Improvements VISSIM Results (AM Peak Hour) 84
Exhibit 8: 2023 Gumtree Road and Sea Pines Improvements VISSIM Results (PM Peak Hour) 86
Exhibit 9: 2023 No Widening Through Stoney Community VISSIM Results (AM Peak Hour) 94
Exhibit 10: 2023 No Widening Through Stoney Community VISSIM Results (PM Peak Hour) 96
Exhibit 11: 2050 Build Traffic Volumes 100

Appendices

Appendix A - Field Travel Time Data
Appendix B - SYNCHRO and VISSIM Measure of Effectiveness Tables

US 278 Coridor Independent Review

Page left intentionally blank

Major Study Findings

CBB conducted an independent review and address several questions:

1. Is widening US 278 to six-lanes necessary?
2. Will the SCDOTproject create downstream traffic impacts outside of the SCDOTproject area?
3. Are SCDOT'sfuture year forecasts reasonable?
4. Could strategies such asenhancing the local public transportation system, deploying adaptive traffic signals, and/or implementing Intelligent Transportation Systems (ITS) address congestion without widening US 278 to six lanes?
5. How will the SCDOTproject impact non-motorized users?

Using a data-driven approach, CBB addressed the questions above through the following majortasks:

1. Reviewed previousstudies,
2. Reviewed US CensusJ oumey to Work and Hilton Head Chamber of Commerce visitor data.
3. Studied historical SCDOTtraffic count data.
4. Completed field studies including traffic counts, travel pattem/traffic queue observations, and travel time runs.
5. Constructed a VISSIM model, which is a micro-simulation traffic flow model that specializes in the a nalysis of complex transportation systems. VISSIM evaluates all elements of the roadway system (e.g., freeways, ramps, intersections) and how these elements operate as a system. For example, VISSIM incorporates traffic dynamics such as platooning caused by nearby signals and upstream traffic flow restrictions. This VISSIM analysis expanded upon previous studies by including Business US 278 to Indigo Run and the Cross Island Parkway to the Sea PinesCircle.
6. Evaluated the bic ycle and pedestrian infrastructure on Hilton Head Island and Bluffton.
7. Studied the local transit systems.
8. Reviewed the use of adaptive traffic signals a nd Intelligent Transportation Systems (ITS).

The major independent review findings are listed below and discussed in detail throughout the report.

1. The widening of US 278 to six-lanes is necessary to accommodate existing and future traffic accessing Hilton Head Island. US 278 is already operating at capacity during both the morning and evening peak periods. The result is signific ant congestion, which impacts travel time and travel time reliability. Congestion will continue to get worse as traffic volumes continue to grow. Read more at: Queue Observations, Page 32 and 2023 No-Build Operations, Page 57.
a. AM Traffic Peak: The moming traffic peak congestion impacts the ability for workers to access jobs on Hilton Head Island, as more than 60\% of the isla nd's workforce uses US 278 for their daily commute. Although there has been a post-COVID shift in the ability for many people to work from home, those working in sectors such as the service industry, health care, and construction still need to commute to work. The heavy traffic congestion during the moming peak period addstravel time to these workers' daily commutes.

During the moming peak hour, there is a heavy flow of traffic on eastbound US 278 onto Hilton Head Island. Eastbound US 278 traffic queues from Squire Pope Road to past the Bluffton Parkway interchange. This queue is caused by insufficient capacity at the eastbound US 278 approach at Squire Pope Road. Traffic is fed onto eastbound US 278 from both US 278 to the west of Bluffton and from the Bluffton Parkway such that US 278 is at capacity east of the Bluffton Parkway interchange merge. The Squire Pope Road intersection includes 3 eastbound lanes, but the third through la ne is added immediately

US 278 Comidor Independent Review Beaufort County, South Carolina

September 2023
at the intersection. It is only approximately 100 feet long, and it is underutilized. The moming peak eastbound queue starts at this location because it is the first capacity constra int on the island.

Figure 1: Typical Eastbound Morning Peak Traffic Congestion near Bluffton
b. PM Traffic Peak: The evening traffic peak impacts workers and visitors a like. The evening traffic peak is signific antly congested, and travel times can be highly variable from day to day. Forexample, a weather event can impact the travel choices of daytime visitors, changing traffic loading onto US 278. Not only does the heavy traffic congestion during the evening peak period add travel time to workers' daily commutes, but the variability in tra vel time from day to day impacts the ability for workers to plan after-work activities, such as attending events with family and friends.

During the evening peak hour, there is a heavy flow of traffic on westbound US 278 off the island. The westbound US 278 queue from Squire Pope Road reaches past the Museum Street intersection. This queue is caused by insufficient capacity at the westbound US 278 approach at Squire Pope Road. The basic issue is that traffic from the 3 lanes on westbound Business US 278 and traffic from the 2 lanes on northbound Cross Island Parkway are condensed into only 2 westbound lanes through the traffic signal.

Figure 2: Typical Northbound Evening Peak Traffic Congestion on Cross Island Parkway
2. VISSIM modeling confirms that the proposed SCDOT US 278 Corridor Improvements will increase roadway capacity, reducing congestion and improving travel time reliability during the morning and evening traffic peak periods. CBB constructed a VISSIM model for this evaluation. VISSIM is a micro-simulation traffic flow model used to evaluate complex transportation systems. VISSIM evaluates roadway elements as a system (e.g., freeways, ramps, intersections). For example, VISSIM incomorates dynamics such as platooning of vehicles caused by nearby signals and upstream traffic flow restrictions. The VISSIM analysis also expanded upon previous studies by including Business US 278 to Indigo Run and the Cross Island Parkway to the Sea PinesCircle.

Figure 3: Example VISSiM Screenshot at Cross Island Parkway Interchange
3. CBB providestwo additional recommendationsthat would augment the project'seffectiveness.

Gumtree Road: The intersection of Gumtree Road/Business US 278 should be restriped with 3 eastbound through lanes as a local project in conjunction with the proposed US 278 widening. Priorto 2012, the intersection of Gumtree Road/Business US 278 wasstriped with three eastbound through lanes. In the 2012-2014 timeframe, this intersection was restriped with two eastbound through lanes when crosswalks were added at the intersection. During the moming peak period, the intersection operates at capacity and the eastbound traffic queues back past the Cross Island Parkway bridges. When US 278 is widened, more traffic will be able to access this intersection during the peak periods, a nd the intersection will become a bottleneck if left in its current configuration. This intersection should be restriped with three eastbound through la nes to accommodate the additional traffic. It appears that this modification can be made in such a way that retains the pedestrian crosswalk, without degrading pedestrian safety, and not increasing the physical footprint of the intersection. However, design work is required to determine the best way to make the improvement.

Figure 4: Typical Eastbound Morning Traffic Queues at Gumtree Road
Sea Pines Circle: The Sea Pines Circle currently operates at capacity and with significant congestion during both the moming and evening traffic peak periods. The congestion at this intersection impacts the attractiveness of the Cross Island Parkway as an altemative to Business US 278. Congestion at the Sea Pines Circle makes the travel times longer for traffic using Cross Island Parkway, as most of the trips using the Cross Island Parkway need to go through this intersection. At the same time, this intersection provides critical access to the public beach area, to Sea Pines, and to Business US 278 on this part of the Island. In this role, the Sea Pines Circle serves as a gateway, slowing and calming traffic accessing these areas.

Figure 5: Typical Southbound Morning Traffic Queues Near Target Road from Sea Pines Circle

For this study, we modeled the Sea Pines Circle as a traffic signal 1) to explore if a traffic signal would be able to accommodate traffic demands at this location and 2) to remove the Sea Pines Circle as a bottleneck in the model. Removing this bottleneck is necessary for the traffic from this a rea to reach otherstudy intersections. This study does not recommend reconstruction of this intersection to a traffic signal. Our recommendation is for the local community to consider options to improve the capacity of the Sea Pines Circle intersection while, if possible, maintaining it as a gateway to slow traffic transitioning from the Cross Island Parkway to the local roadway network.

The local community should consider options to improve the capacity of the Sea Pines Circle intersection while, if possible, maintaining it as a gateway to slow traffic transitioning from the Cross Island Parkway to the local roadway network. We understand that the Town of Hilton Head is currently studying ways to improve this intersection. Read more at: 2023 Gumtree Road and Sea Pines Improvements Operations, Page 78.
4. CBB agrees that SCDOT's future year forecasts are reasonable and consistent with historical growth trends and ongoing local development. The proposed SCDOT improvements will have a long-term benefit for the Hilton Head Island community by increasing the traffic capacity of US 278 and improving traffic operations. Read more at: Traffic Forecasts, Page 98 and Future Growth Analysis, Page 103.
5. Given finding 4 above, there is a limit on how much future traffic growth can be accommodated by the proposed project. Slowing the future growth of traffic on US 278 will extend the road's long-term functionality. The Hilton Head community can proactively slow future traffic growth through Travel Demand Management (TDM) strategies.

An example of a tourist-oriented community that isproactively promoting TDM is Summit County, Colorado. Summit County is home to several popular ski resorts like Arapahoe Basin, Breckenridge, Copper Mounta in, and Keystone, which bring many visitors each year.

Figure 6: The Breeze Trolley System Map
There has been a significant growth in traffic both in the Summitt County region and on l-70, which is the primary highway connecting Summitt County to the Denver community and to Colorado's front range. I-70 is often congested during the winter months with people driving to Summit County and other regional ski resorts. One way in which Summit County is dealing with this traffic is with the Summit Stage, the area's transit system. This system began in 1977 initia lly as a service for moving skiers from their lodgings to the slopes. Due to the popularity of the system, Summit County has continuously expanded the system. Today, the system includes 28
buses and is used by both tourists coming to ski and commuters who live in the area and work at the area's ski resorts. The transit system has become a popular way to get around with ridership steadily inc reasing over the years. Ridership hasgrown from a round 432,000 a nnual trips in 1992 to around 1.7-1.9 million annual trips today, making Summit Stage the second busiest rural transit system in Colorado. This program could be an example for the Hilton Head community to look at as it develops its own TDM strategy.

We see opportunities for the Hilton Head community to create functional and attractive altematives to single vehicle travel through investments in programs that promote public transporta tion/shuttles, micro-mobility (e.g., e-bikes), and park-and-ride/c ar-pool systems. Hilton Head Island already has the foundational elements for these types of systems to build upon.

Based on our analysis and discussions with Palmetto Breeze, we offer several short-term recommendations to improve the transit service to and on Hilton Head Island. These enhancements would leverage the island's robust bicycle/pedestrian network and the proposed SCDOT US 278 multi-use path for a robust multi-modal transportation system that provides travel options. Short term recommendations include:

- Secure a dedicated local transit sales tax to provide stable and increased funding.
- Establish strategic park-and-ride locations to allow visitorsto "park once" a nd then use other travel modes to get around the island, lessening the number of a utomobile trips taken.
- Explore a design that would support a future bus-on-shoulder program with SCDOT.
- Provide better connections between the Breeze Trolley and other local routes such as the Bluffton Breeze and Sea Pines Trolley to increase the range of travel for transit riders.
- Increase marketing/branding to increase awareness of transit options.
- Develop a dial-a-ride service to provide a direct service forpeople to get to work.
- Develop new routes to untapped ridership markets, particula rly retirement communities.
- Work with partners, such as the business community, to encourage transit ridership.
- Provide quality transit senvice to Hilton Head Island airport.

Note - Travel Demand Managing strategies, like transit expansion, will not eliminate the need for the SCDOTUS 278 Coridor Improvements project. TDM strategies should be used alongside the project to help extend the project's functional life. Read more at Extending the Life of Improved US 278, Page 111.
6. Operational Improvements, such as adaptive traffic signal systems a nd Intelligent Transportation Systems (ITS), make traffic flow better and enhance the ability of system operators (DOT staff and emergency responders) to respond to incidents and optimize traffic management. These systems should be pursued and implemented where appropriate. The Town of Hilton Head Island is currently deploying an adaptive traffic signal system that will be operational in 2023. TTS deployments will not negate the need forthe SCDOTUS 278 Coridor Improvements project, but they will help system operators maximize the benefits from this investment.

Introduction

CBB Transportation Engineers + Planners (CBB) has completed an independent review of the South Carolina Department of Transportation's (SCDOT) US 278 Coridor Improvements Environmental Assessment (EA) to evaluate the long-term mobility performance of the SCDOTpreferred altemative.

Background

Asshown in Figure 7, the SCDOTEA Preferred Altemative widens US 278 to six lanes between Salt Marsh Drive and the Cross Island Parkway with a new right-in/right-out interchange at the Pickney Island National Wild life Refuge, minor intersection improvements between Salt Marsh Drive and Gumtree Road, and a new multi-use path from the east end of the Skull Creek Bridge to Spanish Wells Road.

Figure 7: SCDOT Project Area

Specific ally, and as stated in the EA:
The Mackay Creek bridges are located along US 278 and connect the Moss Creek area on the Bluffton side (mainland) to Pinckney Island National Wild life Refuge (PINWR). The bridge that caries US 278 eastbound lanes over Mackay Creek is 2,190 feet in length and was constructed in 1956. The bridge that c a miesUS 278 westbound la nesoverMackay Creek is 2,231 feet in length and was constructed in 1983. The roadway width, curb to curb, on the eastbound and westbound brid ges is 36.1 feet. The Skull Creek bridges are located a long US 278 and connect Pinckney Island to Hilton Head Island. The bridges carying US 278 eastbound and westbound over Skull Creek are 2,821.9 feet in length and were constructed in 1982. The roadway width, curb to curb, on the eastbound and westbound bridges is 36.1 feet. Mackay Creek and Skull Creek are primarily used by recreational vessels. Public boat ramps and private docks are located along both creeks.

Project Purpose: The purpose of this project is to address structural deficiencies at the existing eastbound Mackay Creek bridge and reduce congestion within the project study area (PSA). An altemative would successfully reduce congestion if it would decrease travel delays within the US 278 comidor relative to the 2045 No Build condition during peak traffic hours. While the original purpose of this project was to replace the structurally deficient eastbound Mackay Creek Bridge, at the request of Beaufort County, the project was expanded to include improvements throughout the comid or between Moss Creek Drive and Wild Horse/ Spa nish Wells Road. The eastbound Mackay Creek bridge (traveling to Hilton Head Island) would be replaced as part of the South Carolina Department of Transportation (SCDOT) bridge replacement program. The other three bridges in the PSA - the westbound bridge over Mackay Creek and the eastbound and westbound bridgesoverSkull Creek - have also been identified forpotential improvements. In addition, access to Pinckney Island Nationa I Wild life Refuge (PINWR) and the C.C. Haigh, Jr. Boat Landing have also been considered for possible improvements.

Project Need: The Mackay Creek bridge was built during the 1950s and is scheduled for replacement as part of SCDOTs bridge replacement program. However, based on disc ussions with local officials, the scope of the proposed bridge replacement project was expanded to include the US 278 Comidor from Moss Creek Drive to Wild Horse/Spanish Wells Road to address traffic congestion within the project limits. A traffic a nalysis was used to determine base year conditions and to a nalyze future needs. The need for this project is derived from the following factors: Growth in population and employment and Decreased mobility and increased traffic congestion.

In 2021, the consulting firms MKSK and HDR completed an independent review of the US 278 Coridor Improvements EA on behalf of Beaufort County and the Town of Hilton Head Island. Overall, the independent review found SCDOTs project to be reasonable. For the review, MKSK and HDR completed a SimTraffic a nalysis which indicated that extensive queueing would occur if US 278 was not widened from four to six lanes. A crash analysis was also completed and indicated a need for a reduction in vehicular conflict points and congestion. The independent review also agreed with SCDOT's decision to not pursue a reversible lane, agreed with SCDOT's altemative analysis methodology, and agreed that the preferred altemative meets the purpose and need of the project. When exploring other opportunities for intersection improvements within the project comidor, the independent review recommended using two-phase signals on US 278, limiting conflict points at intersections, setting a $45-\mathrm{mph}$ speed limit on US 278 through the study area, and providing bike, pedestrian, and bridge aesthetic enhancements.

SCDOT's preferred altemative has since been refined to further avoid environmental impacts and enhance safety. Modificationsthat have been made to the preferred altemative include: (1) removing the J enkins Road intersection and rerouting to C. Heinric hs Circle, (2)adding dual left-tums from US 278 onto Squire Pope Road, (3)retaining left-tums from US 278 at Wild Horse Road and adding dual lefttums at Spa nish Wells Road, (4)reducing the width of the inside four la nesbetween the Crazy Crab and Spanish Wells Road along the Stoney Community, meandering the westbound lanes of US 278 on Jenkins Island to create a parkway effect, and (6)adding a scenic look-out point along the multi-use path over each creek.

Study Purpose

In 2023, Beaufort County contracted with CBB to conduct an independent review and address several questions:
6. Is widening US 278 to six-lanes necessary?
7. Will the SCDOTproject c reate downstream traffic impactsoutside of the SCDOTproject area?
8. Are SCDOT's future year forecasts rea sonable?
9. Could strategies such asenhancing the local public transportation system, deploying adaptive traffic signals, and/or implementing Intelligent Transportation Systems (ITS) address congestion without widening US 278 to six lanes?
10. How will the SCDOTproject impact non-motorized users?

CBB employed a data-driven approach to evaluate the transportation network as a complex system serving multiple users and unique traffic pattems. We addressed the questions above through the following majortasks:
9. Reviewed previous studies (e.g., 2021 US 278 Coridor Improvements EA and associated documents and the 2021 independent review).
10. Reviewed Joumey to Work data from US Census Bureau and visitor data from the Hilton Head Chamber of Commerce.
11. Studied historical SCDOTtraffic count data to understand the pattems and variations of traffic flow using the US 278 bridges.
12. Conducted a field visit, collected traffic counts, observed traffic pattems and queues, and completed travel time runs in March 2023.
13. Constructed a VISSIM model, which is a micro-simulation traffic flow model that specializes in the a nalysis of complex transportation systems. VISSIM evaluates all elements of the roadway system (e.g., freeways, ramps, intersections) and how these elements operate as a system. For example, VISSIM incorporates traffic dynamics such as platooning caused by nearby signals and upstream traffic flow restrictions. This VISSIM analysis expanded upon previous studies by including Business US 278 to Indigo Run and the Cross Island Parkway to the Sea Pines Circle. The intersections included in this VISSIM model are shown in Figure 8.
14. Evaluated the bicycle and pedestrian infrastructure on Hilton Head Island and in the Bluffton community to identify ways in which the proposed US 278 multi-use path can connect to existing infrastructure and enhance mobility optionsforpeople traveling to and from Hilton Head Island.
15. Studied the local transit systemsto identify opportunities to enhance connectivity to Hilton Head Island through public transportation.
16. Commented on the ability of adaptive traffic signals and ITS to address capacity and mobility defic iencies on US 278.

Figure 8: CBB Study Area

Review of Demographic and Trip Data

As a starting point for our analysis, we explored the Hilton Head Island Chamber of Commerce, US Census, and SCDOT count station data to better understand travel pattems on US 278. This a nalysis helped us to gain an understanding of who uses US 278 and is impacted by its congestion. It also providesan understa nding of how travel pattemson US278 va ry throughout the year. Given the nature of Hilton Head Island as a recreation and vacation destination, we know that people traveling on US 278 are a mixture of residents, workers, a nd visitors.

Hilton Head Island Chamber of Commerce Visitor Data

Figure 9 provides monthly visitor data for the years 2018-2023. This data shows that tourist a c tivity varies between 150,000 visitors to over 300,000 visitors per month, with peak season occuring during the summermonths. Hilton Head Isla nd hosted over 3,000,000 visitors in 2021 and 2022. The data also shows a growing number of visitors year over year from the 2018 to 2023 period.

Figure 9: Hilton Head Island Visitors by Month ${ }^{1}$

US Census Workforce J oumey to Work Data

A review of US Census Bureau data shows that there were 23,321 jobs on Hilton Head Island in $2019{ }^{2}$. Of these, 36% of the workers were reported to live on Hilton Head Island and 64% of the workers were reported to live on the mainland. A US Census Bureau distribution of where Hilton Head workers live is shown in Figure 10.

[^0]

Figure 10: US Census Journey to work Data for Hilton Head Workforce
The number of overall workers commuting to Hilton Head Island from the mainland is likely underreported because it does not include the many jobs that have a business address on the ma inland, but which perform services on Hilton Head Island (e.g., landscape and construction). In our observations, we saw many work vehicles during the moming commute that fit this category (see Figure 11).

Looking at the USCensusdata, we know that more than 50% of the jobs on Hilton Head Island are jobs related to accommodation, food service, retail trade, construction, and health care. These types of jobs are typically in-person and schedule driven. This data, combined with observations made during our field visit, supports the conclusion that the existing moming traffic peak congestion is largely workforce driven. The early moming traffic has a significant number of workers going to their jobs on Hilton Head Island. Similarly, the evening traffic peak congestion is also largely driven by workers, but with a greater influence from visitors a nd other non-working trips.

Figure 11: Morning Work Vehicles on Eastbound US 278 Heading to Hilton Head Island

SCDOTC ount Sta tion Data

We also reviewed the variability of traffic accessing Hilton Head Island throughout the year to assess the extent to which the peak tourist season drives traffic congestion. To complete this a nalysis, we obtained 2022 daily and hourly traffic volume data from a SCDOTc ount station on US 2783. This analysis helps to choose a "design travel day" for the VISSIM traffic modeling. This design day should be representative of a "heavy traffic day" but not the "heaviest traffic day" of the year. If the comidor were designed to accommodate the heaviest peak hour volumes that occuroverthe year, the system would be overbuilt for much of the year. This would lead to the need for an unnecessary roadway footprint and impacts on the local community. If the comidor were designed to accommodate the average of the peak hourvolumesoverthe year, the system would be overcapacity forapproximately half of the year. Given this, we sought to use the "85th percentile day" as a representative design threshold fortraffic volumes.

Figure 12 provides the daily traffic volumes for every weekday in 2022. Total annual US 278 volumes are just over 20,000,000 trips per year. The plot shows that traffic volumes generally ranged from 53,000 vehic les perday to nearly 70,000 vehicles perday. The R value for this data is 0.0083 . The R value is a measure of consistency in the data. The closer the R value is to 1 , the more consistent the data. This plot shows that daily traffic volumes are heaviest corresponding with the March through August tourist season. The low count in late September coincides with Huricane lan'slandfall in South Carolina.

[^1]

Figure 12: 2022 US 278 Daily Traffic Volumes
Figure 13 provides the moming peak hour traffic volumes for eastbound traffic for every weekday in 2022. Eastbound is the predominant direction for the moming peak traffic. The plot shows that traffic volumes generally ranged from 2,400 vehicles per hour (vph) to $2,800 \mathrm{vph}$. The R value for this data is 0.0614 , indic ating a greater degree of consistency a compared to the daily traffic in Figure 12. This is consistent with both 1) the moming peak period being largely influenced by work trips and 2) the moming peak period being congested. Congested facilities operating at capacity tend to display greater consistency.

Figure 13: 2022 US 278 AM Peak Hour Eastbound Traffic Volumes
Figure 14 provides the evening peak hour traffic volumes for westbound traffic for every weekday in 2022. Westbound is the predominant direction for the evening peak traffic. The plot shows that traffic volumes generally ranged from 2,700 vehic les per hour (vph) to $3,200 \mathrm{vph}$. The R value for this data is 0.0229, indicating a greater degree of consistency as compared to the daily traffic in Figure 12, but less consistency as compared to the moming peak traffic shown in Figure 13. This is consistent with the evening peak period being largely influenced by work trips but with a greater influence from other types of trips. Anecdotally, we heard that occurrences such as weather events can also have a signific ant impact on evening peak traffic. An aftemoon rainstorm can send people home from the beaches, increasing the number of people seeking to leave the island during evening peak traffic.

Figure 14: 2022 US 278 PM Peak Hour Westbound Traffic Volumes
In summary, this data shows the following:

- The Hilton Head Isla nd Cha mber of Commerce estimates that Hilton Head Isla nd hosts a round $3,000,000$ visitors per year. While we do not have data on how many trips to Hilton Head Island are made by these visitors, if we assume that there is an average of 3 people per vehicle and 2-4 trips per visit (1-2 trips onto the island and 1-2 trips off the island), that equates to a p proximately $2,000,000-4,000,000$ trips peryear.
- Total a nnual bridge US 278 volumes are just over20,000,000 trips peryear. Based on this and the visitor data, we would estimate that a pproximately $10-20 \%$ of the annual trips are made by the 3,000,000 people visiting the island annually.
- US Census shows 23,321 jobs on Hilton Head Island, with 36% of the workers living on Hilton Head Island and 64% of the workers living on the mainland. More than 50% of these jobs are jobs related to accommodation, food service, retail trade, construction, and health care, which are typically in-person and schedule driven.
- A combination of this data supports the conclusion that the existing moming traffic peak congestion is largely workforce driven. The early moming traffic has a significant number of workers going to their jobs on Hilton Head Island. Similarly, the evening traffic peak congestion is also largely driven by workers, but with a greater influence from non-working trips. This trip pattem is consistent with trip pattems across the United States.
- The consistency of the peak period volumes throughout the year supports the use of March for the "design travel day". The moming and evening peak period traffic is relatively consistent throughout the year, presenting less of a risk in either over-designed or under-designed the facility for the various needs during different times of the year. Consistent peak period traffic volumes throughout the year suggest that improvements recommended by an analysis of the "design travel day" will be appropriate to meet the comidor's needs throughout the year.

Public Transportation

As a next step, we reviewed the local public transportation systems to understand the role that they play in local mobility and explored opportunities for transit to absorb a portion of the future travel growth. Transit service within the Town of Hilton Head Island and its vicinity includes both public and private entities. The public transit service provider is Palmetto Breeze, who offers bus services to all members of the public, to tourists, and to commuters across the Lowcountry Region. Private transit is offered by a variety of different small operators, but the biggest and most viable private transit system is the Sea Pines Trolley, though it only offers service a round the Sea Pines resort. The Sea Pines Trolley is considered a private transit service because it is funded by the private company that manages the Sea Pines resort and is only concemed with offering transportation services to those who have been granted access to the resort, which are primarily tourists. Sea Pines requires that all visitors (and, by circumstance, users of the Sea Pines Trolley system) either have accommodations on the Sea Pines resort property or pay an entry fee to access the resort. The following sections provide an overview of both the public transit in the Town of Hilton Head as well as the private Sea Pines Trolley system.

Palmetto Breeze

Palmetto Breeze is operated by the Lowcountry Regional Transportation Authority. It is the only public transporta tion system for the Town of Hilton Head Island and the greater Lowc ountry region, including Beaufort, J asper, Hampton, Allendale, and Colleton Counties. Currently, Palmetto Breeze has about 40 buses in its fleet and 60 employees service wide. There are 19 routes serving the Lowcountry region, with 10 routesproviding service to and/orwithin the Town of Hilton Head Island. Two routesare currently suspended while they are being redesigned.

Palmetto Breeze routes can fall into one of three categories: commuter, local, and shuttle. The commuter routes run twice per day- once for the moming commute and once for the evening commute. Most of the commuter routes are designed to bring employees to Hilton Head Island from communities throughout the Lowcountry region. The moming buses begin their route with the stop furthest a way from Hilton Head. There is one bus per route. Most routes are timed to reach a transfer center in Bluffton at about the same time. At that point, passengers can transfer among each of the different routes before each bus continues its joumey to Hilton Head Isla nd, leaving the transfer center at the same time. Each of these routes has two, three-digit identifying numbers. Routes on the Hilton Head side of the transfer center begin with an 8XX while routes on the other side begin with 3XX. The other two digits are the same foreach route. Most of the commuter buses are also equipped with bike racks on the front to allow passengers to store their bikes if needed.

The second type of routes are local routes Local buses operate on shorter fixed routes. Like the commuter routes, most local routes only operate twice per day. However, Breeze routes (the Bluffton Breeze and the Breeze Trolley) operate throughout the day. Local buses generally operate in denser parts of the Lowc ountry a rea, particula rly the Bluffton Breeze and Breeze Trolley.

The third type of routes are shuttle routes. These routes are short, fixed routes, generally with only a couple of stops. Most shuttles are tourist-oriented, like the Coligny Beach Parking Shuttle which provides service between Coligny Beach and an overflow parking lot. However, some shuttles serve other groups, like the USCB Sand Shark Shuttle which transports USCB students between the Bluffton and Beaufort campuses. Figure 15 provides a map of the system and Figure 16 provides an overview of the current routes.

Figure 15: Palmetto Breeze system Map

US 278 Coridor Independent Review Beaufort County, South Carolina September 2023

Route Number	Name	Type	Serves Hilton Head Island?	Status
$\mathbf{3 0 2 / 8 0 2}$	St. Helena/Beaufort to Hilton Head	Commuter	Yes	Active
$\mathbf{3 0 7 / 8 0 7}$	Gifford to Hilton Head	Commuter	Yes	Active
$\mathbf{3 0 8}$	Pineland/Ridgeland to Hilton Head	Commuter	No	Active
$\mathbf{3 0 9}$	Big Estate/Sheldon to Hilton Head	Commuter	No	Active
$\mathbf{3 1 0 / 8 1 0}$	Fairfax/Hampton to Hilton Head	Commuter	Yes	Active
$\mathbf{3 1 1 / 8 1 1}$	Allendale to Hilton Head	Commuter	Yes	Active
$\mathbf{3 2 0 / 8 2 0}$	Ruffin/Walterboro to Hilton Head	Commuter	Yes	Active
$\mathbf{4 2 9}$	Walterboro Works	Local	No	Active
$\mathbf{5 0 1}$	Sheldon/Seabrook to Beaufort	Local	No	Active
$\mathbf{5 0 2}$	St. Helena Island to Beaufort	Local	No	Active
$\mathbf{5 0 3}$	Bluffton to Hilton Head Island	Local	Yes	Suspended
$\mathbf{5 0 7}$	Mariott Resorts Shuttle	Local	Yes	Suspended
$\mathbf{5 0 8}$	USCB Sand Shark Shuttle	Shuttle	No	Active
$\mathbf{5 0 9}$	Daufuskie Ferry Shuttle	Local	No	Active
$\mathbf{5 1 1}$	Bluffton Breeze	Local	No	Active
$\mathbf{7 0 2}$	Beaufort Loop	Local	No	Active
$\mathbf{8 0 4}$	Bluffton - RSI/Buckwalter	Local	No	Active
$\mathbf{8 6 3}$	Bluffton to Palmetto Bluff	Shuttle	No	Active
$\mathbf{5 0 5}$	Breeze Trolley	Local	Yes	Active
$\mathbf{5 1 0}$	Coligny Beach Parking Shuttle	Shuttle	Yes	Active

Figure 16: Palmetto Breeze Bus Routes

Part of the reason that the Palmetto Breeze has limited service is because it lacks a stable, dedicated funding source. Instead, it is funded through grants. Nearly half of Palmetto Breeze's fixed route operating funds are provided through the Federal Transit Administration (FTA) 5307 and 5311 grants, which aid with transportation-related planning in urban (5307) and rural (5311) areas. The other half of the funding comes from prima rily local sources, including the Town of Hilton Head Island and the City of Beaufort.

Sea Pines Trolley

In addition to the public transportation offerings, there is also a small tra nsit network within the Sea Pines resort, privately run by the resort operator. Due to the expansive size of the Sea Pines resort, the Sea Pines Trolley operates three fixed routes seasonally from May to December. Figure 17 provides a map of the Sea Pines Trolley system. The trolleys are free to ride, though there is a fee to enter the resort for a nyone not staying in the Sea Pines Resort.

Figure 17: Sea Pines Trolley Network

CBB Observations a nd Site Visits

To make first-hand observations and gather more detailed information on transit in Hilton Head Island, CBB staff conducted a site visit from March 27-29 in2023. CBB also conducted a virtual interview with Palmetto Breeze Executive Director and General Manager Mary Lou Franzoni on April 12, 2023. These experiences allowed CBB staff to better tell the story of transit in Hilton Head Island and provide recommendations for how it can play a significant role in addressing the congestion challenges present along US-278.

CBB staff first investigated the current transfer center in Bluffton, which is a product of the Palmetto Breeze Small Urban Area Transit Development Plan approved in 2018. All moming and aftemoon commuter routes pass through the transfer center at a pproxima tely the same time. During the moming commute, this allows passengers commuting in on each of the various commuter routes to transfer to the bus that will provide continuing service closest to their destination in Hilton Head. The opposite occurs in the aftemoon. The commuterbus routesoperate on a hub and spoke system, with the transfer centerbeing the hub.

Due to budgetary constraints, the transfer center has been combined with the Palmetto Breeze maintenance facility (shown in Figure 18). Making the facility multi-use does save money, but its location presents problems. The facility is in a low-density, industrial part of Bluffton. For a maintenance facility, this is a good location because activities such as storing and maintaining buses are allowed. However, for a transferfacility, it is not ideal. Even for those who would be willing to come to the facility to catch a bus, "no trespassing" signs and a barbed wire fence lining the perimeter suggest that the
facility is not an accessible public facility. A transfercenterthat was in a more central ordense location could be a better choice.

Figure 18: Bus Parking; Palmetto Breeze Maintenance Facility and Transfer Center
CBB staff subsequently explored the operation, visibility, and accessibility of the various bus stops. The Bluffton Breeze was chosen to examine and CBB staff decided to run a couple scena rios from the following five locations:

- Bluffton Walmart/Sa m's Club,
- Tanger Outlet Mall Hilton Head I,
- Tanger Outlet Mall Hilton Head II,
- Old Town Bluffton, and
- Beaufort County Govemment Center.

Signage for the Old Town Bluffton (Figure 19) and Beaufort County Govemment Center stops were easy enough to find. The stops were safe to get to from the points of origin but may prove tricky for a nyone in a wheelchair.

Figure 19: Bus stop in Old Town Bluffton
The three other stopscaused signific ant confusion, however. Asmuch as CBB staff tried to find the stop at the Bluffton Walmart and Sam's Club, it was either overlooked or non-existent. A Breeze bus was seen meandering through the parking lot (on-time), but no passengers boarded or disembarked, making the location of the stop unable to be detemined. As shown in Figure 20, the mall directory at both Tanger Outlet Mall locations indicates a location within the mall property for a "bus check in." The symbol resemblesa transit bus. However, when at the location indicated on the map at each mall, no bus stop signage is visible. In both situations, the stop indicated on the mall directory is NOT for Bluffton Breeze buses. Rather, it is for tour buses - private charters on a shopping trip. The actual transit stops are located on a road behind the malls. Although these roads are indicated on the map, the Bluffton Breeze stopslocated on these roadsare not.

TRANSPDRTATIDN ENGINEERS+PLANNERS

Figure 20: Mall signage indicating a "bus check-in" but no On-Site Signage for Transit Service
Encouraging ridership is a nother area where budget constraints appearto have led Palmetto Breeze leadership to make specific choices. The bus vehiclesthemselves are standard asfaras US transit buses are concemed. They appearclean, comfortable, modem, and well-maintained. Many of the buses include bike racks on the front to encourage multimodal commuting. Signage and branding on each bususe hues of green and blue with an eye-catching font and logo (see Figure 21).

Figure 21: Palmetto Breeze Vehicles, including a Bluffton Breeze bus (far left) And commuter buses

There are two appsthat can be downloaded to a smartphone to help with the ridership experienceBreezePass and CatchTheBreeze(Figure 22). BreezePass allows users to purchase and redeem tickets aswell as view routes on the Breeze Trolley a nd the Palmetto Breeze commuter buses. CatchTheBreeze allows riders to track buses on each of Palmetto Breeze's routes. Both apps should be simple and intuitive to those with smartphone experience. However, that generally appears to be the extent of Palmetto Breeze's capability to market itself.

Bluffton Breeze

Round Trip
(i) Binthon Bresze
$\$ 2.00$

302 Beaufort Commuter
307 Estill Commuter
308 Ridgeland Commuter

309

310 Hampton Commuter
311 Allendale Commuter
320 Walterboro Commuter

501

502
505 Breeze Trolley South Island
505 Breeze Trolley South Island

Figure 22: Transit app Screenshots: BreezePass (far left) and CatchTheBreeze (Center/right)
Whereas many transit agencies engage in some level of marketing, including everything from billboards with taglines regarding the benefits of the service to stations that are about form as much as they are function, this is not an area Palmetto Breeze has been able to allocate a lot of resources. There is some targeted marketing, but not to the level of many transit agencies. This may be limiting Palmetto Breeze's ability to reach potential riders who may not be aware of what Palmetto Breeze is, what services it provides, and what to expect from taking a trip on Palmetto Breeze.

In essence, what CBB staff found during their investigation is a transit service that maximizes its budget to offer the best possible service under funding and land use constraints. Palmetto Breeze has been
rather clever in this area, using its maintenance facility as a transfer center and investing in a useful app to help riders use the system. However, the system could achieve much more with a dedicated funding source. There also appearto be opportunitiesto create partnerships with trip generators, such as the Tanger Outlet Malls, to c reate better visibility a nd a wa reness of the service for customers.

Bicycle Network

A transportation network requires a variety of different modes to serve a variety of different purposes. Whether commuting or running errands, going a short distance or a long distance, on a joumey with a purpose or just traveling aimlessly, each mode has its place. Bicycles as a mode of transportation provide benefits to any transportation network. They can be used for recreation, providing physical and mental health benefits to riders. They can also help fill in the gaps of transit, allowing commuters to reach destinations not viably reachable by transit. And, of course, they can provide mobility to access moderately nearby destinations. Providing a safe, comfortable, comprehensive bike network for bicyclists of all ages and abilities is key to integrating bicycling as a viable form of transportation into a transportation network. Hilton Head Island understands this and has created a robust and functional bicycle network. In fact, Hilton Head Island has achieved gold-level status Bicycle Friendly Community as determined by The League of Americ an Bic yc lists.

Hilton Head Island Bicycle Network

Hilton Head Island currently provides 64 miles of public pathways and nature trails that can be used by both pedestrians and bicyclists. On top of that, beaches on Hilton Head Island are ridable at low tide. There are 12 miles of coastline accessible from the Town's beach parks. Furthermore, among Hilton Head Island's private developments, there are an additional 50 miles of bic ycle pathways and shared roadways for use by residents and guests of those communities. Collectively, this a mounts to over 120 miles of public and private bike pathways offered throughout the island. It iseasy to get a round Hilton Head Island via bicycle. Examples of bicycle facilities on Hilton Head Island are shown in Figure 23.

Figure 23: Typical Bicycle Facilities on Hilton Head Island
The Hilton Head bicycle network can support the SCDOTUS 278 Comidorproject in two ways. First, the US 278 Comidor project includes the construction of a new multi-use path on the south side of US 278, which will connect the mainland with Hilton Head Island. It is 4.7 miles between Moss Creek Drive and Gumtree Road, which is a rideable distance, especially with current technology such as electric
bic ycles. This presents an opportunity for trips to be made to Hilton Head Island via bicycle. Second, the robust bicycle network on Hilton Head Island can be leveraged with an enhanced public transportation system to provide local circulation options for people who choose to take public transportation to reach Hilton Head Island.
The bicycle network a llows bic yc lesto travel to most of the primary destinationson the island. However, the prevailing low-density style of land use in Hilton Head coupled with many gated communities where access by the public is not allowed may present issues to bicyclists. What seems to aid in this is that the primary part of the network follows the arterial loop a round the island composed of the Cross Island Parkway/ Wiliam Hilton Parkway, the island's primary roadway for getting around. Many points of origin and destination can be found along this coridor, including a significant number of the shopping centers, hotels, as well as many of the residential communities, gated or otherwise.

This loop is divided into two sections- the Long Pathway and the Short Pathway. This presuma bly allows bic yc lists to have options for how long or how farthey wish to ride based on available time or physical ability. From different parts of the loop, bicyclistscan accesstwo othersections of the primary pathway network, the Historic Pathway, and the Beach Pathway. Both are loopsthemselves and allow bicyclists to experience different types of scenery, as each pathway includesa variety of Points of Interest. These pathwaysare composed of asphalt, with some wooden bridgesused to passovercreeksand lagoons. In some areas, the pathways are composed of dirt. There are a few parks around the island that are reachable from the pathways, providing a destination of sorts for cyclists on a recreational ride, including: Fish Ha ul Creek, Ba rker Field Observation Deck, Greens Shell Community Park, Shelter Cover Community Park, and Old House Creek. A map of current public pathways is shown in Figure 24.

Figure 24: Hilton Head Island Public Pathways Map

The level of safety and comfort in the network is notable. There are only two on-street bike facilities: a bike lane on Arrow Road between just west of the Motorcoach Resort and just northwest of Dunnagans Alley (about 720 feet) and a bike-on-shoulder facility across the Coligny Beach Bridge. The rest of the network largely operates as a system of side paths, running parallel to roadways and buffered by landsc aping, providing a level of safety from motor vehicles. However, some pathways do run directly next to roadways, many of which may be considered sidewalks. The Town continues to replace these with buffered, widerpathways. Hilton Head'sCapital Improvement Program (CIP) c urrently showsthree sections of sidewalk are in the process of being replaced by pathways.

During the site visit conducted by CBB from March 27-29, 2023, CBB staff rented a bike and explored the bicycle network across Hilton Head Island. Doing so allowed CBB to get a sense of what bic ycling is like from a rider's perspective on the isla nd and allowed CBB to evaluate how well the bike network fits into the greater transportation network. One of the first things CBB observed during the field visit was just how comfortable and inviting the pathways feel to ride on. Being primarily off-street did correlate with a sense of safety from other motor vehicle traffic. This made for a relaxing and leisurely ride where cyclists of all agesand abilitiescan indeed feel comfortable and confident riding the pathway network around Hilton Head Island. Many people were observed taking advantage of the pathways. The weather was mostly favorable during CBB's visit with little precipitation and mild temperatures. The pathwa ys were busy, but not crowded. They were certainly not near maximum capacity or at a point where too many users could compromise enjoyment of the pathways.

Wayfinding is easy with attractive signage, wooden maps posted strategically along the pathways and other directional and informational signs are posted with good visibility and frequency, making it easy to get around and know where you are. Stop signs are posted at each crossing to remind cyclists to stop and look for cross traffic. The pathways are in good shape with little need for immediate upkeep. At the time of the site visit, the pathways were smooth and were free of brush. Nor were there any wayfinding signs that appeared to be missing or broken. This is a rich network to build from, as disc ussed in later sections.

Collected Data

The following sections describe the traffic data collection and VISSIM modeling effort undertaken by CBB in this study. CBB undertook an extensive data collection effort. This included peak hour tuming movement volume counts, 7-day midblock volume counts, travel time runs, and queue observations. All Traffic Data Services, ШС collected the peak hour tuming movement and 7-day midblock volume counts. Members of the CBB team visited the project location in March of 2023 to collect the travel time data and make queue observations.

Peak Hour Tuming Movement Counts

Peak hour tuming movement volume counts were collected at 26 study intersections. Data was collected from 6:00 AM to 9:00 AM and 4:00 PM to 6:00 PM to determine when the peak hour occurs. Ultimately, the existing moming peak hour was 7:30 AM to 8:30 AM, and the existing evening peak hour was 4:00 PM to 5:00 PM. Peak tuming movement volume counts are summa rized in Exhibit 1.

Compared to the 2018 Design Year traffic volumes collected in the SCDOTEnvironmental Assessment Study, the 2023 volumescollected by CBB are, on a verage, within 3\%. The peak hour volumesbetween the two data sets are similar due to the existing capacity constraints within the study area, which will be discussed in detail in later sections of the report.

7-Day Midblock Counts

Midblock segment volume counts were collected in both directions at three locations in the study area: US 278 between Pickney Wild life Refuge and Blue Heron Point Road, Business US 278 between Pembroke Drive and Indigo Drive, and US 278 between Marshland Road and Gum Tree Road. These countstook place overseven consecutive days, from March 22, 2023, to March 28, 2023. This midblock volume count data allowed CBB to develop bi-directional average daily traffic (ADT) volumes that account for traffic variations throughout the week the data was collected. ADT values are shown in Exhibit 1.

US 278 Comidor Independent Review

Page left intentionally blank

Note: Map is a Graphical Representation Only.

Travel Time Data

Travel time data wascollected fortwo main routeswithin the project area: US 278 between MossCreek Drive and Indigo Drive and Cross Island Parkway between Wild Horse Road and Greenwood Drive. An aerial view of the two travel time routes is shown in Figure 25. The CBB project team collected this data by driving the routes during their field visit from March 27, 2023, to March 29, 2023. Using a GPS device connected to a computer, latitude, longitude, and speed data points were collected every second of each trip along the routes. These data points were processed and summarized to produce a travel time summary for both routes. Summarized travel time data for the moming and evening peak hours are included in Appendix A.

Figure 25: Travel time Routes

Queue Observations

In addition to travel time data, the project team made queue observations during their field visit from March 27, 2023, to March 29, 2023. Queue observations were performed during the moming and evening peak periods across the entire study area.

Moming Peak Hour Observations

During the moming peak hour, there is a heavy flow of traffic on eastbound US 278 onto Hilton Head Island. We observed that the eastbound US 278 approach queue at Squire Pope Road reached the Bluffton Parkway interchange. Based on our observations, the queue iscaused by insufficient capacity at the eastbound US 278 approach at Squire Pope Road. Traffic is fed onto eastbound US 278 from both US 278 to the west of Bluffton and from the Bluffton Parkway such that US 278 is at capacity east of the Bluffton Parkway merge. The Squire Pope Road intersection includes 3 eastbound lanes, but the third through lane is added immediately at the intersection. It is only approximately 100 feet long, and it is underutilized. The morning peak eastbound queue starts at this location because it is the first capacity constraint on the island.

Figure 26 shows the eastbound US 278 approach queue at Squire Pope Road, reaching Blue Heron Point Road. Figure 27 shows the eastbound US 278 approach queue at Squire Pope Road, reaching the Bluffton Parkway interchange.

Figure 26: Eastbound US 278 Queue at Squire Pope, reaching Blue Heron Point Road

Figure 27: Eastbound US 278 queue from Squire Pope Road reaching Bluffton Parkway interchange
After the Spanish Wells Road intersection, vehiclescan either utilize the CrossIsla nd Parkway orBusiness US 278 to travel further on Hilton Head Island. Currently, most of the traffic utilizes Business US 278, resulting in lengthy eastbound Business US 278 approach queues. Figure 28 shows the eastbound Business US 278 approach queue at Gumtree Road.

The traffic on Cross Island Parkway travels to the Sea Pines Circle. We observed that the heavy southbound Palmetto Bay Road and eastbound Greenwood Drive traffic is served by a single-lane roundabout, resulting in lengthy queues. Figure 29 shows the southbound Palmetto Bay Road approach queue reaching past Target Road intersection. Figure 30 shows the southbound Palmetto Bay Road approach queue at Target Road. Figure 31 shows the eastbound Greenwood Drive approach queue.

Figure 28: Eastbound Business US 278 approach queue at Gumtree Road

US 278 Coridor Independent Review Beaufort County, South Carolina September 2023

Figure 29: Southbound Palmetto Bay Road queue at Sea Pines Circle, reaching past Target Road

Figure 30: Southbound Palmetto Bay Road approach queue at Target Road

Figure 31: Eastbound Greenwood Drive approach queue

Hilton Head elementary school, middle school, and high school are all located north of US 278 on Wilbom Road. The schools have staggered start times, with elementary school starting at 7:45 AM, high school starting at 8:00 AM, and middle school starting at 8:45 AM. However, the current drop-off operations result in an extensive queue impacting US 278. Figure 32 shows the drop-off queue along Wilbom Road. Figure 33 shows the drop-off queue reaching westbound Business US 278.

Figure 32: School Drop-Off queue along Wilborn Road

Figure 33: Drop-Off queue, reaching Westbound Business US 278

Evening Peak hour Observations

During the evening peak hour, there is a heavy flow of traffic on westbound US 278 off the isla nd. We observed that the westbound US278 approach queue at Squire Pope Road reached passthe Museum Street intersection. Based on our observations, the queue is caused by insufficient capacity at the westbound US 278 approach at Squire Pope Road. The basic issue is that traffic from the 3 lanes on westbound Business US 278 and traffic from 2 lanes from northbound Cross Island Parkway are condensed to 2 westbound lanes through the traffic signal. Figure 34 shows the westbound US 278 approach queue at Squire Pope Road. Figure 35 shows the westbound US 278 approach queue at Squire Pope Road, reaching Spanish Wells Road. Figure 36 shows the westbound US 278 approach queue at Squire Pope Road, reaching pass the Museum Street intersection. Figure 37 shows the westbound US 278 approach queue at Squire Pope Road, near the Indigo Run Drive intersection.

Figure 34: Westbound US 278 approach queue at SQuire Pope Road

Figure 35: Westbound US 278 Queue from SQuire Pope Road reaching Spanish Wells Road

คөе
TRANSPORTATION ENGINEERS+PLANNERS

Figure 36: Westbound US 278 queue from SQuire Pope Road, reaching Museum Street

Figure 37: Westbound US 278 from Squire Pope Road near Indigo Run Drive

We also observed several lengthy queues on the crossroads along US 278 impacted by the westbound US 278 approach queue at Squire Pope Road. Figure 38 shows the northbound Spanish Wells Road approach queue at US 278. Figure 39 shows the northbound Gumtree Road approach queue at Business US 278. Figure 40 shows the northbound Museum Street approach queue at Business US 278. Figure 41 shows the northbound Cross Island Parkway queue near the Gumtree Road Off-Ramp. Figure 42 shows the northbound Cross Island Parkway queue near Spanish Wells Road. We observed several extensive queues at the Sea Pines roundabout on the northbound Pope Avenue approach and the westbound Business US 278 approach.

Figure 38: Northbound Spanish Wells Road approach queue at US 278

Figure 39: Northbound Gumtree Road approach queue at Business US 278

US 278 Coridor Independent Review Beaufort County, South Carolina September 2023

Figure 40: Northbound Museum Street approach queue at Business US 278

Figure 41: Northbound Cross Island Parkway queue, near the Gumtree Road Off-Ramp

Figure 42: Northbound Cross Island Parkway queue, near the Spanish Wells Road intersection

Traffic Modeling Software

It is our understanding that the SCDOTEnvironmental Assessment Study used SYNCHRO for the traffic a nalysis. SYNCHRO is a macro-level a nalytical traffic flow model based on study procedures outlined in the Highway Capacity Manual, published by the Transportation Research Board. SYNCHRO is recognized as the most widely used tool in the traffic engineering field for a nalyzing and optimizing traffic flows at signalized intersections, but SYNCHRO does have its limitations. SYNCHRO is a macroscopic software that analyzes roadway geometry in isolation and does not consider the effects on and from the surrounding roadway system.

CBB constructed a VISSIM model forthisevaluation. VISSIM is a micro-simulation traffic flow model used to evaluate complex transportation systems. VISSIM evaluates roadway elements as a system (e.g., freeways, ramps, intersections). Forexample, VISSIM incorporates dyna mic ssuch asplatooning ca used by nearby signals and upstream traffic flow restrictions.

VISSIM Model Development

Several traffic characteristics are taken into consideration in the development of the no-build VISSIM model. Each input ensures that the no-build VISSIM model accurately represents observed traffic conditionsso that the build VISSIM modelscan accurately determine the impacts of potential roadway changes.

Geometric Data

Links and Connectors form the foundation of a ny VISSIM network. Links a nd Connectors represent the roadway network in the VISSIM. To assist in the coding of the model network, aerial photography was obtained using VISSIM 22's built-in Bing Maps aerial feature. In addition, site photographs and the Beaufort County GIS Public Mapping site were also used to gather the geometrical information of the study area. Additionally, Beaufort County provided the grades(gradient) on the existing bridges, which is 4% Grades are an important element of the microsimulation model as they directly impact the vehicle acceleration and deceleration parameters.

Signal-C ontrolled Intersections

VISSIM can model signal timing plans using either the built-in fixed-time control orvarious other extemal signal control logic formats. The extemal logic format is the Ring Bamier Controller (RBC), which was used in this model at signalized intersections. The settingson this controllertype are saved to an extemal data file with the extension *.bbc. The traffic signal timing plansforthe signalized intersections within the study area were obta ined from the Town of Hilton Head Island and Beaufort County. 2023 No-Build AM and PM peak hour SYNCHRO models were developed and converted into RBC filesforVISSIM. The RBC files were imported into VISSIM, and signal heads and detectors were added to the VISSIM model at each signa lized intersection.

Stop-Controlled Intersections

Stop-controlled intersections were modeled in VISSIM using a combination of stop signs and conflict areas. The stop sign defines the location at which vehic les must stop. Stop signs were coded based on the aerial data. Conflict areas allow the modeler to specify right-of-way at any location where two or more links intersect. Conflict areas were coded at stop-controlled and signal-controlled intersections.

Speed Data

The posted speed limit on the roadways was obtained from Google Maps's Street View function. Desired Speed Decision points are used to define the speed limits within the network to represent the variation in driver behavior, VISSIM assigns speed distributions for each speed limit. For exa mple, a 40mph speed limit will have a distribution of vehicles traveling between 35 mph and 45 mph . VISSIM assigns different distributions to different vehicle classes (e.g., cars and trucks).

Reduced Speed Areas were used to model short sections with reduced speeds (curves or tums). Like the Desired Speed Decision points, a new set of desired speed distributions (in this case, 'reduced' speeds) are assigned to each vehicle class to account for slower speeds within the reduced speed area. However, unlike the Desired Speed Decision Point, when encountering a Reduced Speed Area, each vehicle begins to decelerate in advance to reach the lower desired speed as it enters the defined area. After leaving the reduced speed area, the vehicle retums to its actual desired speed. The Reduced Speed Areas coded in the model correspond to tums (left and right) and locationsthat, due to roadway geometry, will impose a mandatory reduction on the speed of vehicles, independently of their origina lly desired speed.

Vehicle Routing

VISSIM supports two different forms of vehicle routing: dynamic and static. In dynamic routing, the vehicle travels from itsorigin to designation based on the best a vailable route when there are multiple routes between each origin and destination. Static routing codes mean the vehicle will follow an assigned path or route from origin to destination irespective of the best available route. A route is a sequence of links and connectors from a routing decision point to the destination(s). The study comidor does not have a multiple routes option, meaning that there is only one route available for a vehicle to travel between any origin and destination. Hence, it was determined that static routing would be the most suitable to replicate the existing conditions for the no-build. The static routing can be coded as the "intersection" method, where a new routing decision is provided at each intersection, or as the "end-to-end" method, where a single continuous route is provided from the link where vehic les enter the network to the link where vehicles exit the network. The "intersection" method is often easier to code, but "end-to-end routes" accounts fortravel pattemswithin a VISSIM network. Forthisstudy, static routing was coded with the "end-to-end" method.

Vehic le Composition

The default vehicle types available in VISSIM are Car, HGV (truck), Bus, Tram (transit), Bike, and Pedestrian. These can be used to define traffic composition for a mic rosimulation model. For this study, only two default vehicle types, Car and HGV (truck), were utilized. Traffic compositions are the proportions of each vehicle type present in each of the vehicle input sources. Based on the traffic counts collected, it was determined that the US 278 comidor has approximately 2% of trucks during peak hours, thus 2% of trucks and 98% of cars were utilized as the vehic le composition.

Vehic le Inputs

Vehicle Inputs determine the actual volume of vehicles entering the VISSIM network in vehicles per hour. Vehicle Inputs are assigned to specific Links within the VISSIM network and different flow rates can be set for specific Time Intervals relative to the Simulation Period. The Vehicle Inputs were coded
on "entry links" (i.e., Links with no upstream connec tors) as these Links represent the outer bonds of the VISSIM network.

Driver Beha vior Pa rameters

During the simulation, the driverbehaviorparametersare used to guide the vehiclesthrough the model network. VISSIM uses five driving behavior models, out of which only the Urban (Motorized) was used for the model network.

Simulation Setting and Random Seed Variation

The AM model wasset to run from 6:30-9:30 AM with a 1-hourpre-peak, 1-hour peak, and 1-hourpostpeak. Hence, the peak hour analysis period was 7:30-8:30 AM. Similarly, the PM model was set to run from 3:00-6:00 PM with 1-hour pre-peak, 1 -hour peak, a nd 1-hour post-peak. Hence, the peak hour analysis period was 4:00-5:00 PM. Since VISSIM represents variation and randomness in the traffic models, multiple simulation runs were completed, and the peak hour analysis results are average together. The models were run ten times with different random seeds.

Calibration and Visual Validation

To achieve logical mic rosimulation results, it is imperative to calibrate and validate the model using observed field data. Once the calibration targets are achieved, the same parameters can then be applied to the future year models.

C a libration Criteria

To ensure satisfactory calibration of the model, standards were used to establish targets regarding traffic flows and travel times. The targets of this calibration effort were set at the values included in Traffic Analysis Toolbox Volume III -Guidelines for Applying Traffic Mic rosimulation Modeling Software published by the Federal Highway Administration (FHWA), shown below in Figure 43. Based on the purpose of this study, it was determined that no-build model calibration will be based on the US 278 bridge throughput, travel time, and speed criteria.

Criteria and Measures	Calibration Acceptance Targets
Hourly Flows, Model Versus Observed	
Individual Link Flows	
Within 15%, for 700 veh $/ \mathrm{h}<$ Flow <2700 veh/h	> 85\% of cases
Within 100 veh/h, for Flow < 700 veh/h	$>85 \%$ of cases
Within 400 veh/h, for Flow >2700 veh/h	$>85 \%$ of cases
Sum of All Link Flows	Within 5% of sum of all link counts
GEH Statistic < 5 for Individual Link Flows*	$>85 \%$ of cases
GEH Statistic for Sum of All Link Flows	GEH < 4 for sum of all link counts
Travel Times, Model Versus Observed	
Journey Times, Network	
Within 15\% (or 1 min , if higher)	$>85 \%$ of cases
Visual Audits	
Individual Link Speeds	
Visually Acceptable Speed-Flow Relationship	To analyst's satisfaction
Bottlenecks	
Visually Acceptable Queuing	To analyst's satisfaction

Figure 43: fHWA Model Calibration Criteria

Calibration Process

As previously mentioned, count data was collected from a count station on US 278 from the hours of 6:00 AM to 9:00 AM and 4:00 PM to 6:00 PM. From these data sources, specific vehicle input flow rates were developed for the pre-peak, peak, and post-peak hours for the AM and PM models. Initial runs of the model did not yield calibration results within the target ranges as well as visual validation. To calibrate the model, the vehicle input flow rates at specific locations were increased during the prepeak hourforboth the AM and PM models. Due to the extensive queuing present in the US 278 coridor, the collected counts represent the capacity of the coridor, but not the demand. The inputs were adjusted to include the vehicles in the queue to fully represent the demand. Increasing the vehicle input flow rates during the pre-peak hour was necessary to load the network and generate similar queues on eastbound US 278 at Squire Pope Road during the AM peak hour and on westbound US 278 at Squire Pope Road during the PM peak hour. The adjustments of vehicle input flow rates yielded calibrated results and visual validation.

TRANSPDRTATIDN ENGINEERS+PLANNERS

C a libration Results

Travel Time and Speed

A model is reasonably calibrated when the modeled travel times and speeds are within 15% of the average field collected travel time and speeds. Table 1 shows the AM and PM peak hour travel time calibration results.

Table 2 shows the AM and PM peak hour speed calibration results. As shown, in both the AM and PM models, the travel time and speed results are within the target range.
table 1: Field and 2023 No-Build VISSIM Travel Time Comparison

AM			
Direction	Field Average (secs)	VISSIM Average (secs)	Percent Difference
EB US 278	1165	1178	1%
WB US 278	509	517	2%
NB Cross Island Parkway	413	402	-3%
SB Cross Island Parkway	469	533	14%
PM			
Direction	Field Average (secs)	VISSIM Average (secs)	Percent Difference
EB US 278	547	580	6%
WB US278	1750	1742	0%
NB Cross Island Parkway	1053	1023	-3%
SB Cross Island Parkway	461	447	-3%

Table 2: Field and 2023 No-Build VISSIM Speed Comparison

AM				
Direction	Field Average (MPH)	VISSIM Average (MPH)	Percent Difference	
EB US 278	18.4	17.8	-3%	
WB US 278	41.1	40.3	-2%	
NB Cross Island Parkway	51.4	51.5	0%	
SB Cross Island Parkway	45.2	38.4	-15%	
PM				
Direction	Field Average (MPH)	VISSIM Average (MPH)	Percent Difference	
EB US 278	38.3	36.0	-6%	
WB US278	12.0	12.0	0%	
NB Cross Island Parkway	19.4	20.3	4%	
SB Cross Island Parkway	44.4	45.8	3%	

TRANSPORTATIDN ENGINEERS+PLANNERS

US 278 Brid ge Throughput

A model is reasonably calibrated when the modeled US 278 bridge throughputs are within 15% of the average field collected throughput. Table 3 shows the AM and PM peak hour US 278 bridge throughput. As shown, in both the AM and PM models, the US 278 bridge throughputs are within the target range.

Table 3: Field and 2023 No-Build VISSIM US 278 Bridge Throughput

AM				
Direction	Field Average (Vehicles)	VISSIM Average (Vehicles)	Percent Difference	
WB US278	1590	1474	-7%	
EB US278	2860	3240	13%	
PM				
Direction	Field Average (Vehicles)	VISSIM Average (Vehicles)	Percent Difference	
WB US 278	3075	2930	-5%	
EB US278	2140	2102	-2%	

Visual Inspection of the Model Operations

Visual validation of the models is an imperative step in the development and calibration of the model. It is essential forthe modeler to perform a thorough visual validation to eliminate a ny coding errors and achieve logical results. After coding, the models were run and visually inspected multiple times. Any errors pertaining to the lane change decision, yield, conflict area, etc., were then addressed to achieve realistic vehicle movements.

2023 No-Build AM Queues

Figure 44 - Figure 50 show several queues from the study a rea during the 2023 No-Build AM.

- Figure 44 shows the eastbound US 278 approach queue at Squire Pope Road, reaching the Bluffton Parkway Interchange.
- Figure 45 shows the eastbound US 278 queues between Squire Pope Road and Crosstree Drive.
- Figure 46 shows the eastbound Business US 278 approach queue at Gumtree Road.
- Figure 47 shows the southbound Palmetto Bay Road approach queue at Sea Pines Circle.
- Figure 48 shows the southbound Palmetto Bay Road approach queue at Target Road.
- Figure 49 shows the eastbound Greenwood Drive approach queue at Sea PinesCircle.
- Figure 50 shows the drop-off queue on northbound Wilbom Road near Business US 278.

Generally, these queue lengths agree with field observations.

Figure 44: Eastbound US 278 Queue at Bluffton Parkway Interchange - 2023 No-Build AM

DRAFT
US 278 Coridor Independent Review Beaufort County, South Carolina September 2023

Figure 46: Eastbound Business US 278 Approach Queue at Gumtree Road - 2023 No-Build AM

Figure 47: Southbound Palmetto Bay Road Queue at Sea Pines Circle - 2023 No-Build AM

Figure 48: Southbound Palmetto Bay Road Approach Queue at Target Road - 2023 No-Build AM

Figure 49: Eastbound Greenwood Drive Approach Queue at Sea Pines Circle - 2023 No-Build AM

Figure 50: Drop-off queue on northbound Wilborn Road near Business US 278-2023 No-Build AM

2023 No-Build PM Queues

Figure 51 - Figure 56 show several queues from the study a rea during the 2023 No-Build PM.

- Figure 51 showsthe westbound US278 approach queue at Squire Pope Road, reaching Spanish Wells Road.
- Figure 52 shows the westbound Business US 278 approach queues between Gumtree Road and Indigo Run Drive.
- Figure 53 shows the northbound Gumtree Road approach queue at Business US 278.
- Figure 54 shows the westbound US 278 approach queue at Spanish Wells Road along the northbound Cross Island Parkway.
- Figure 55 shows the northbound Pope Avenue queue at Sea Pines Circle.
- Figure 56 shows the westbound Business US 278 approach queue at Sea Pines Circle.

Again, generally, these queue lengths agree with field observations.

Figure 51: Westbound US 278 Approach Queue at Spanish Wells Road - 2023 No-Build PM

Figure 52: Westbound Business us 278 queues between Gumtree \& Indigo Run - 2023 No-Build pM

Figure 53: Northbound Gumtree Road approach queue at Business US 278-2023 No-Build PM

Figure 54: Westbound US 278 queue from Spanish Wells Rd on Cross Island Pkwy- 2023 No-Build PM

Figure 55: Northbound Pope Avenue queue at Sea Pines Circle - 2023 No-Build PM

Figure 56: Westbound Business US 278 approach queue at Sea Pines Circle - 2023 No-Build PM

Study Procedures

The VISSIM model operationswere evaluated by conducting a capacity a nalysis of the intersections in the study a rea. These a nalyses are based on many characteristics, including no-build and build traffic volumes, peaking characteristics, roadway and intersection geometry, a nd traffic control/traffic signal pattems.

As previously mentioned, a VISSIM model was developed for the study area since the software can examine how variouselements in the roadway network impact and influence each other. A SYNCHRO model was developed to create RBC files for the VISSIM model as well as examine certa in intersections in isolation from the rest of the network. In addition, SIDRA was utilized for the Sea Pines Circle roundabout. This software package is the most widely recognized tool available for evaluating roundabouts and is consistent with methods supported by the Highway Capacity Manual.

Note that the results will not be identical between VISSIM and the SYNCHRO and SIDRA models due to differences in software methodologies. All the software packages provide different information that is useful in understanding how the proposed roadway geometrics will work in the field. Considering both analysis methods is important to see how the entire system works together (VISSIM) and how each ind ividual element works ind ependently (SYNCHRO and SIDRA).

Several Measures of Effectiveness (MOE) were used in this evaluation, including level of service (LOS), volume-to-capacity ratio (v/c), intersection capacity utilization (ICU), vehic ulardelay, tra vel time, and queue length.

Operating conditions were graded in accordance with six levels of traffic service (Level A "Free Flow" to Level F "Fully Saturated") established by the HCM. LOS are measures of traffic operations that consider speed, delay, traffic intemuptions, safety, driver comfort, and convenience. LOS C, which is nomally used for design, represents a roadway with volumes ranging from 70% to 80% of its capacity. LOSD is generally considered acceptable for peak hours in urban and suburban areas. In addition to LOS, queue lengths provide important measures of intersection operations.

For intersections, LOS is directly related to control delay. At signa lized intersections, the LOSc riteria differ from that at unsignalized intersections primarily because different transportation facilities create different driverexpectations. The expectation is that a signa lized intersection is designed to camy higher traffic volumes and, consequently, may experience greater delay than an unsigna lized intersection. Table 4 summa rizes the LOS thresholds used in the a nalysis for intersections.

Table 4: Level of Service Thresholds

Level of Service (LOS)	Control Delay per Vehicle (sec/veh)	
	Signalized Intersections	Unsignalized Intersections
A	≤ 10	$0-10$
B	$>10-20$	$>10-15$
C	$>20-35$	$>15-25$
E	$>35-55$	$>25-35$
F	$>55-80$	$>35-50$
	>80	>50

In addition to LOS and queue lengths, v/c and ICU ratios provide important measures of intersection operations. Intersection movements can operate an acceptable LOS (D or better) yet still have unacceptably high v/c ratios. In general, a v/c or ICU ratio of approximately 0.9 corresponds to occasional queuing and cycle failure, and a v/c or ICU ratio between 0.9 and 1.0 corresponds to frequent queuing and cycle failure. A v/c or ICU ratio greater than 1.0 results in general failure of the movement or intersection, respectively. Therefore, v/c and ICU ratios were considered in addition to LOS and queue length when evaluating an intersection's operations. Cells highlighted in yellow in the intersection MOE tables indic ate LOS E, while cells highlighted in red indic ate LOS F. Furthermore, cells highlighted in yellow indicate v/c and ICU ratios between 0.9 and 1.0 , and cells highlighted in red indic ate V / c and ICU ratios over 1.0.

In addition to intersection operations, the VISSIM models provide travel time data and network-wide performance measures. The travel time data provides a measure of comidor operations along each direction of US 278 and Cross Island Parkway. The comidor travel times were compared between NoBuild and Build scenarios. Network-wide performance measures were also used to see the overall differences between the No-Build and Build scenarios. The following performance measures were compared:

- Average Delay Per Vehicle (seconds);
- Average Speed PerVehicle (miles perhour);
- Total Delay (Hours); and
- Unmet Demand (Vehicles).

Analysis Scenarios

- 2023 No-Build (Existing Geometrics);
- 2023 SCDOTPreferred Altemative;
- 2023 Build (Gumtree Road and Sea Pines Improvements); and
- 2023 Build (No Widening Through Stoney Community).

Near-Term (2023) Traffic Operations 2023 No-Build Operations

The 2023 No-Build VISSIM evaluation results are illustrated in Exhibit 2 for the AM peak hour and Exhibit 3 forthe PM peak hour. Comprehensive VISSIM and SYNCHRO tablesare provided in Appendix B. Table 5 summarizes the travel time results for the US 278 and Cross Island Parkway comidors under 2023 NoBuild conditions.

Table 5: 2023 No-Build VISSIM Travel Times

Direction	AM (Minutes)	PM (Minutes)
EB US 278	19.6	9.7
WB US 278	8.6	29.0
NB Cross Isla nd Parkway	6.7	17.0
SB Cross Isla nd Parkway	8.9	7.5

During the AM peak, the eastbound US 278 route has an excessive travel time of over 19 minutes due to insuffic ient roadway capacity along eastbound US 278. West of the Bluffton Parkway interchange, eastbound US 278 provides three through lanes, but a through lane is dropped at the Fording Island Road Extension intersection. This lane drop results in slower speeds on eastbound US 278, as shown in Figure 57. The VISSIM links speeds at the lane drop are less than 20 mph . Between the Bluffton Parkway interchange and Squire Pope Road, eastbound US 278 provides two through lanes. At the Bluffton Parkway interchange, the eastbound US 278 and Bluffton Parkway merge camies 1,880 vph on eastbound US 278 and 980 vph on the Bluffton Parkway On-Ramp during the AM peak hour, which results in failing operations. Table 6 shows the eastbound US 278 and Bluffton Parkway merge operations during the AM peak hour, which currently operates at LOS F at a density of $87.2 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$ and at an average speed of 12.4 mph . Figure 58 showsthe VISSIM link speeds at the Bluffton Parkway interc hange during the AM peak hour. As shown, eastbound US 278 near the Bluffton Parkway interchange has speeds between 10 and 30 mph .

Table 6: Eastbound US 278 \& Bluffton Parkway Merge Operations - 2023 No-Build AM

Number of Lanes	LOS	Density (pc/mi/ln)	Average Speed (mph)
3	F	87.2	12.4

At the Squire Pope Road intersection, the eastbound US 278 approach provides two full-through lanes and a short third-through lane for the eastbound through movement that currently caries $2,405 \mathrm{vph}$. We observed that the third-through lane is rarely utilized since it is short (a round 100 feet in length). The v/c ratio in SYNCHRO for the eastbound US 278 approach at Squire Pope Road with two through lanes is 0.99 during the AM peak hour, indicating that the approach isoperating at capacity. Figure 59 shows the VISSIM link speeds at the Squire Pope Road intersection during the AM peak hour. As shown, the eastbound US 278 approach at Squire Pope Road hasa speed of less than 30 mph .

The eastbound US 278 tra vel time is further extended by insuffic ient capacity at the eastbound US 278 approach at Gumtree Road. The eastbound US 278 approach provides two through lanes for 1,620 vph. The v/c ratio in SYNCHRO forthe eastbound US 278 approach at Gumtree Road is 1.02 during the AM peak hour, which indic ates that the traffic signal is operating at capacity. The VISSIM results show
the eastbound approach currently operating at LOS F at a delay of 84 secs/veh during the AM peak hour. Figure 60 shows the VISSIM link speeds at the Gumtree Road intersection during the AM peak hour. As shown, the eastbound US 278 approach at Gumtree Road has a speed of less than 10 mph .

The southbound Cross Isla nd Parkway route has a travel time of nea rly 9 minutes. We observed that the southbound Cross Island Parkway has ample capacity until the Sea Pines Circle. The roundabout provides free-flow right-tum movements but a single circulating lane for the through and left-tum movements at each approach. The v/c ratio in SIDRA for the southbound Palmetto Bay Road approach at Sea Pines Circle is 1.06 during the AM peak hour, which indicates that the approach is operating at capacity. Figure 61 shows the VISSIM link speeds at the Sea Pines Circle during the AM peak hour. As shown, the southbound Palmetto Bay Road approach at Sea Pines Circle has a speed of less than 15 mph .

During the PM peak, the westbound US 278 and northbound Cross Island Parkway routes have excessive travel times of over 29 minutes and over 17 minutes, respectively, due to the insuffic ient capacity at the westbound US 278 approach at Squire Pope Road. Westbound US 278 between the Squire Pope Road and Bluffton Parkway interchange provides two through lanes. The two through lanes at the westbound US 278 approach at Squire Pope Road camies $2,755 \mathrm{vph}$. The v/c ratio in SYNC HRO for the westbound US 278 approach at Squire Pope Road is 1.07 during the PM peak hour, which indic ates the intersection is operating at capacity. The VISSIM results show that the westbound US 278 approach queue at Squire Pope Road results in failing overall intersection operations at several intersec tions upstream. Figure 62 shows the VISSIM link speeds a long westbound US 278 between Squire Pope Road and J arvis Park Road during the PM peak hour. As shown, westbound US 278 generally has a speed of less than 10 mph .

Additiona lly, VISSIM results show that the eastbound Greenwood Drive and westbound Business US 278 approaches at Sea Pines Circle currently operate at LOS E and F, respectively, during the PM peak. Again, the poor operations are due to the insufficient capacity provided by the single-lane roundabout. Figure 63 shows the VISSIM link speeds at the Sea Pines Circle during the PM peak. As shown, the eastbound Greenwood Drive approach has a roadway speed of less than 15 mph , and the westbound Business US 278 approach has a roadway speed of less than 5 mph .

In summary, the two through lanes provided along eastbound and westbound US 278 between the Bluffton Parkway interchange and Squire Pope Road result in a bottleneck along the peak directions of the US 278 corridor during the AM and PM peaks. Additional capacity along this section of US 278 is needed to relieve the bottlenecks during both peaks.

- During the morning, peak period traffic is fed onto eastbound US 278 from both US 278 to the west of Bluffton and from the Bluffton Parkway such that US 278 is at capacity east of the Bluffton Parkway merge. The Squire Pope Road intersection includes 3 eastbound lanes, but the third through lane is added immediately at the intersection. It is only approximately 100 feet long, and it is underutilized. The morning peak eastbound queve starts at this location because it is the first capacity constraint on the island.
- In the evening, peak period traffic from the 3 lanes on westbound Business US 278 and traffic from 2 lanes from northbound Cross Island Parkway are condensed to 2 westbound lanes through the traffic signal. These two lanes do not have enough capacity for the traffic volumes.

Table 7 summarizes the network performance measures under 2023 No-Build conditions. Overall, the high average delay per vehicle and total delay during both peaks is due to the US 278 bottlenecks. The 677 unmet demand numberduring the PM peak period is a result of roadway constraints causing queueing that extends into the post peak period.

Table 7: 2023 No-Build VISSIM Network Results

Scenario	Average Delay (Seconds)	Average Speed (MPH)	Total Delay (Hour)	Unmet Demand (Vehicles)
2023 No-Build AM	216.2	27.1	709	0
2023 No-Build PM	346.2	20.1	1324	677

Figure 57: VISSIM Link Speeds at Eastbound US 278 Lane Drop - 2023 No-Build AM

TRANSPORTATIDN ENGINEERS+PLANNERS

US 278 Comidor Independent Review Beaufort County, South Carolina September 2023

Figure 58: VISSIM Link Speeds at the Bluffton Parkway Interchange - 2023 No-Build AM

Figure 59: VISSiM Link Speeds at the Squire Pope Road Intersection - 2023 No-Build AM

TRANSPDRTATIDN ENGINEERS+PLANNERS

US 278 Comidor Independent Review Beaufort County, South Carolina September 2023

Figure 60: VISSIM Link Speeds at the Gumtree Road Intersection - 2023 No-Build AM

Figure 61: VISSiM Link Speeds at the Sea Pines Circle - 2023 No-Build AM

Figure 62: VISSiM Speeds on Westbound US 278- Squire Pope Rd to Jarvis Park Rd-2023 No-Build PM

US 278 Comidor Independent Review Beaufort County, South Carolina September 2023

Figure 63: VISSIM Link Speeds at the Sea Pines Circle - 2023 No-Build PM

Note: Map is a Graphical Representation Only.

Note: Map is a Graphical Representation Only.

2023 SC DOTPreferred Altemative Operations

The 2023 No-Build traffic volumes were adjusted to account for the revised geometrics under the SCDOTEA Preferred Altemative configuration (Build conditions). Exhibit 4 summarizes the antic ipated 2023 Build traffic volumes during the AM and PM peak hours. The 2023 SCDOTVISSIM evaluations are illustrated in Exhibit 5 for the AM peak hour and Exhibit 6 for the PM peak hour. Table 8 summarizes the travel time results for the US 278 and Cross Island Parkway comidors under 2023 SCDOT preferred a ltemative conditions.

Table 8: 2023 SCDOT VISSIM Travel Times

Direction	AM (Minutes)		PM (Minutes)	
	2023 No-Build	2023 SCDOT	2023 No-Build	2023 SCDOT
EB US 278	19.6	19.9	9.7	9.4
WB US 278	8.6	8.8	29.0	9.8
NB Cross Island Parkway	6.7	6.7	17.0	6.9
SB Cross Island Parkway	8.9	10.2	7.5	7.7

Under 2023 SCDOTAM conditions, the eastbound US 278 travel time increases by approximately 1\% from 2023 No-Build AM conditions. The slight increase in travel time from 2023 No-Build AM conditions is due to the insufficient capacity at the eastbound US 278 approach at Gumtree Road. As previously mentioned, eastbound US 278 at Gumtree Road is at capacity during the AM peak hour. The VISSIM results show the eastbound approach operates at LOS F at a delay of 95.3 secs/veh during the AM peak hour. Figure 64 shows the eastbound US 278 approach queue at Gumtree Road during the AM peak. During the AM peak period, the SCDOT configuration shifts the existing eastbound US 278 bottleneck from Squire Pope Road to Gumtree Road.

The bottleneck shifting past the southbound Cross Island Parkway ramp results in additional vehicles accessing the southbound Cross Island Parkway. Additional vehicles on the southbound Cross Isla nd Parkway would worsen the southbound Palmetto Bay Road approach at the Sea Pines Circle. Under 2023 SCDOT AM conditions, the southbound Cross Island Parkway travel time increases by a pproximately 15% from 2023 No-Build AM conditions.

Under 2023 SCDOTconfiguration, westbound US 278 and northbound Cross Isla nd Parkway travel times decrease in travel time compared to No-Build conditions due to the additional capacity provided a long the westbound US 278 comidor under the SCDOTroadway configuration.

Table 9 summarizes the network performance measures under 2023 SCDOTconditions. During the AM peak, the overall average delay and total delay decreases by 3% from 2023 No-Build to 2023 SCDOT. However, the average speed is the same and the unmet demand increases by 10 vehicles because of the shifted eastbound US 278 bottleneck from Squire Pope Road to Gumtree Road. During the PM peak, the average delay and total delay dec reasesby 69%, the average speed increasesby 68%, and the unmet demand decreases by 88% due to the SCDOT configuration. Note, the unmet demand under 2023 SCDOTPM conditions is still caused by the insufficient capacity at the westbound Business US 278 approach at the Sea Pines Circle.

Table 9: 2023 SCDOT VISSIM Network Results

Scenario	Average Delay (Seconds)	Average Speed (MPH)	Total Delay (Hour)	Unmet Demand (Vehicles)
2023 No-Build AM	216.2	27.1	709	0
2023 SCDOTAM	210.6	27.1	684	10
2023 No-Build PM	346.2	20.1	1324	677
2023 SCDOTPM	108.4	34.0	408	81

The SCDOT configuration provides improved lane utilization at the eastbound US 278 approach at Spanish Wells Road during the AM peak. However, the eastbound US 278 bottleneck is expected to shift downstream to the Gumtree Road intersection due to insufficient capacity provided at the eastbound US 278 approach at Gumtree Road. Note- the bottleneck shifting past the southbound Cross Island Parkway ramp allows additional vehicles to access the southbound Cross Island Parkway, which worsens traffic operations at the southbound Palmetto Bay Road approach at the Sea Pines Circle.

US 278 Comidor Independent Review

Page left intentionally blank

Note: Map is a Graphical Representation Only.

Note: Map is a Graphical Representation Only.

Note: Map is a Graphical Representation Only.

Figure 64: Eastbound US 278 Queue from Gumtree - 2023 SCDOt Preferred Alternative AM

2023 Gumtree Road a nd Sea Pines Improvements Operations

The SCDOTEA preferred altemative will relieve the existing westbound US 278 bottleneck during the PM peak period. However, the configuration will worsen congestion at the Gumtree Road traffic signal and Sea Pines Circle during the AM peak period. These intersections already operate at capacity and the SCDOT project will allow more traffic to reach the intersections during heavy moming traffic. The queue from the Gumtree Road intersection will spill back onto US278, lessening the value of thisproject. Congestion at the Sea PinesCircle would make use of the Cross Island Parkway less attractive, sending more traffic to Business US 278 and the Gumtree Road traffic signal. Roadway improvements were examined at both intersections to provide recommendations for improved traffic operations.

Gumtree Road: Figure 65 illustrates the recommended change to the eastbound US 278 approach at Gumtree Road. As shown, the eastbound US 278 right-tum lane would be converted to a thru/righttum lane. The additional through lane would be terminated at the next downstream intersection of J arvis Park Road via a right-tum lane. This roadway improvement could be achieved through restriping and traffic signal modifications without increasing the intersection's footprint. Prior to 2012, the intersection of Gumtree Road and Business US 278 was striped with three eastbound through lanes. In the 2012-2014 timeframe, this intersection was restriped with two eastbound through lanes when crosswalks were added at the intersection. This intersection should be restriped with three eastbound through lanes as a local project in conjunction with the SCDOT project to accommodate the additional traffic. It appears that this modification can be made in such a way that retains the pedestrian crosswalk, without degrading pedestrian safety, and not increasing the physical footprint of the intersection. However, design work is required to determine the best way to make the improvement.

Figure 65: Potential Roadway Improvements at Gumtree Road

Sea Pines Circle: The Sea Pines Circle currently operates at capacity and with significant congestion during both the moming and evening traffic peak periods. The congestion at this intersection impacts the attractiveness of the Cross Island Parkway as an altemative to Business US 278. Congestion at the Sea Pines Circle makes the travel times longer for traffic using Cross Island Parkway, as most of the trips using the Cross Island Parkway need to go through this intersection. At the same time, we recognize that this intersection providescritic al access to the public beach area, to Sea Pines, and to Business US 278 on this part of the Island. In this role, the Sea PinesCircle serves as a gateway, slowing and calming traffic accessing these areas. The local community should consider options to improve the capacity of the Sea Pines Circle intersection while, if possible, maintaining it as a gateway to slow traffic transitioning from the Cross Island Parkway to the local roadway network. It is our understanding that the Town of Hilton Head Island has a separate study examining the Business US 278 corridor, and that the Sea Pines Circle will also be evaluated in this study.

For this study, we modeled the Sea Pines Circle as a traffic signal 1) to explore if a traffic signal would be able to accommodate traffic demands at this location and 2) to remove the Sea PinesCircle as a bottleneck in the model. Removing this bottleneck is necessary for the traffic from this area to reach other study intersections. This study does not recommend reconstruction of this intersection to a traffic signal. Our recommendation is for the local community to consider options to improve the capacity of the Sea Pines Circle intersection while, if possible, maintaining it as a gateway to slow traffic transitioning from the Cross Island Parkway to the local roadway network.

The 2023 Gumtree Road and Sea Pines Improvements VISSIM evaluations are illustrated in Exhibit 7 for the AM peak hour and Exhibit 8 for the PM peak hour. Table 10 summarizes the travel time results for the US 278 and Cross Island Parkway comidors under 2023 Gumtree Road and Sea Pines Improvements conditions.

Table 10: 2023 Gumtree Road and Sea Pines Improvements Vissim Travel times

Direction	AM (Minutes)		PM (Minutes)	
	2023 Gumtree No-Build	2023 Gumtree Road and Sea Pines Improvements	2023 No-Build	Road and Sea Pines Improvements
EB US 278	19.6	9.9	9.7	9.4
WB US 278	8.6	8.7	29.0	9.9
NB Cross Island Parkway	6.7	6.4	17.0	6.7
SB Cross Island Parkway	8.9	7.4	7.5	7.4

Under 2023 Gumtree Road and Sea Pines Improvements AM conditions, the eastbound US 278 and southbound Cross Island Parkway travel times decrease by approximately 50% and 17%, respectively, from 2023 No-Build AM conditions. Figure 66 shows the VISSIM link speeds along eastbound US 278 between Squire Pope Road and Gumtree Road during the AM peak hour. Eastbound US278 generally has improved to between 30 and 45 mph .

Table 11 compares the eastbound US 278 and Bluffton Parkway merge operations under the 2023 NoBuild and 2023 Gumtree Road and Sea Pines Improvements conditions during the AM peak hour. As

TRANSPDRTATIDN ENGINEERS+PLANNERS
shown, the additional eastbound US 278 lane is expected to improve the merge from LOSF under 2023 No-Build conditions to LOSB under 2023 Gumtree Road and Sea Pines Improvements. Furthermore, the speed is expected to improve from 12.4 mph under 2023 No-Build conditions to 49.9 under 2023 Gumtree Road and Sea Pines Improvements conditions.

Table 11: Eastbound US 278 \& Bluffton Parkway Operations - AM Peak Hour

Number of Lanes	LOS	Density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	Average Speed (mph)
2023 No-Build (Merge)			
3	F	87.2	12.4
2023 Gumtree Road and Sea Pines Improvements (Merge)			
4	B	14.4	49.9

Table 12 comparesthe intersection operations at Gumtree Road during the AM peak hour under 2023 No-Build and 2023 Gumtree Road and Sea Pines Improvements conditions. As shown, the eastbound Business US 278 approach at Gumtree Road is expected to improve from LOS F under 2023 No-Build conditions to LOSC under 2023 Gumtree Road and Sea Pines Improvements conditions.
table 12: Intersection Operating Conditions (VISSIM)

Intersection/Approach	2023 No-Build AM				2023 Gumtree Road and Sea Pines Improvements AM			
	LOS	Delay	Average Queve	Max Queue	LOS	Delay	Average Queue	Max Queue
US 278 \& Gumtree Road (Signalized)								
Eastbound Business US 278	F	84.0	1475'	1690'	C	34.3	155'	705'
Westbound Business US 278	C	28.8	$115{ }^{\prime}$	$385{ }^{\prime}$	C	28.9	120'	$395{ }^{\prime}$
Northbound Gumtree Road	C	23.1	60^{\prime}	2601	C	25.0	75	300'
Southbound Gumtree Road	E	66.9	150'	630	E	67.1	150'	690'
Overall Intersection	E	60.6	---	---	D	35.8	---	---

Table 13 compares the intersectionsoperations at the Sea PinesCircle during the AM peak hour under 2023 No-Build and 2023 Gumtree Road and Sea Pines Improvements conditions. As shown, the eastbound Greenwood Drive approach is expected to improve from LOS F under 2023 No-Build conditions to LOS D under 2023 Gumtree Road and Sea Pines Improvements conditions. Furthermore, the maximum southbound Palmetto Bay Road queue at Greenwood Drive is expected to decrease from 920 feet under 2023 No-Build conditions to 300 feet under 2023 Gumtree Road and Sea Pines Improvements conditions.

Table 13: Intersection Operating Conditions (VISSIM)

Intersection/Approach	2023 No-Build AM				2023 Gumtree Road and Sea Pines Improvements AM			
	LOS	Delay	Average Queue	Max Queue	LOS	Delay	Average Queue	Max Queue
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout/Signalized)								
Eastbound Greenwood Drive	F	146.6	585'	1240'	D	54.8	80^{\prime}	265'
Westbound Business US 278	C	16.5	60^{\prime}	500	D	47.0	$165{ }^{\prime}$	610'
Northbound Pope Avenue	A	6.8	$<25^{\prime}$	320	B	12.0	$<25^{\prime}$	$180 '$
Southbound Palmetto Bay Road	C	24.5	330'	920	A	8.9	25^{\prime}	3001
Overall Intersection	D	34.7	---	---	C	23.8	---	---

Table 14 compares the intersections operations at the Sea Pines Circle during the PM peak hour under 2023 No-Build and 2023 Gumtree Road and Sea Pines Improvements conditions. As shown, the eastbound Greenwood Drive and westbound approaches are expected to improve from LOSE and F, respectively, under 2023 No-Build conditions to LOS D under 2023 Gumtree Road and Sea Pines Improvements cond itions. Furthermore, the overall intersection delay is expected to improve from LOS F under 2023 No-Build conditions to LOS C under 2023 Gumtree Road and Sea Pines Improvements conditions.

Table 14: Intersection Operating Conditions (VISSIM)

Intersection/Approach	2023 No-Build PM				2023 Gumtree Road and Sea Pines Improvements PM			
	LOS	Delay	Average Queue	Max Queue	LOS	Delay	Average Queve	Max Queve
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout/Signalized)								
Eastbound Greenwood Drive	E	43.4	305'	995'	D	44.1	100'	385'
Westbound Business US 278	F	199.8	1310'	1695'	D	39.8	2201	$775{ }^{\prime}$
Northbound Pope Avenue	D	34.9	$310{ }^{\prime}$	$930{ }^{\prime}$	B	16.6	50^{\prime}	355'
Southbound Palmetto Bay Road	B	11.1	65^{\prime}	670'	B	10.8	30^{\prime}	$320{ }^{\prime}$
Overall Intersection	F	56.8	---	---	C	25.2	---	---

Under 2023 Gumtree Road and Sea Pines Improvements PM conditions, the westbound US 278 and northbound Cross Island Parkway travel times are similar to the 2023 SCDOT PM conditions. The dec rease in travel time compared to No-Build conditions is still due to the additional capacity provided along the westbound US 278 comidor under the SCDOTroadway configuration.

Table 15 summarizes the network performance measures under 2023 conditions. During the AM peak, the average delay decreases by 65%, the average speed increases by 39%, and the total delay dec reases by 66% from 2023 No-Build to 2023 Gumtree Road and Sea Pines Improvements conditions due to the improvements at Gumtree Road. During the PM peak, the average delay decreases by 76%, the average speed increases by 82%, the total delay decreases by 76% the unmet demand
dec reases by 100\% from 2023 No-Build to 2023 Gumtree Road and Sea Pines Improvements conditions due to the signal at Sea PinesCircle.

Table 15: 2023 Gumtree Road and Sea Pines Improvements Vissim Network Results

Scenario	Average Delay (Seconds)	Average Speed (MPH)	Total Delay (Hour)	Unmet Demand (Vehicles)
2023 No-Build AM	216.2	27.1	709	0
2023 G umtree Road a nd Sea Pines Improvements AM	76.6	37.6	242	0
2023 No-Build PM	346.2	20.1	1324	677
2023 G umtree Road a nd Sea Pines Improvements PM	83.7	36.5	317	0

The SCDOT EA preferred alternative will relieve the existing westbound US 278 bottleneck during the PM peak period. However, the configuration will worsen congestion at the Gumtree Road traffic signal and Sea Pines Circle during the AM peak period. These intersections already operate at capacity and the SCDOT project will allow more traffic to reach the intersections during heavy morning traffic. The queue from the Gumtree Road intersection will spill back onto US 278, lessening the value of SCDOT's project. Congestion at the Sea Pines Circle would make use of the Cross Island Parkway less attractive, sending more traffic to Business US 278 and the Gumtree Road traffic signal. Roadway improvements were examined at both intersections to provide recommendations for improved traffic operations.

The Gumtree Road intersection should be restriped with three eastbound through lanes as a part of the SCDOT project to accommodate the additional traffic. This roadway improvement could be achieved through restriping and traffic signal modifications and without increasing the intersection's footprint. Prior to 2012, the intersection of Gumtree Road and Business US 278 was striped with three eastbound through lanes. In the 2012-2014 timeframe, this intersection was restriped with two eastbound through lanes when crosswalks were added at the intersection.

While the Sea Pines Circle operates at capacity and with significant congestion, the intersection also serves as a gateway, slowing and calming traffic accessing these areas. The local community should consider options to improve the capacity of the Sea Pines Circle intersection while, if possible, maintaining it as a gateway to slow traffic transitioning from the Cross Island Parkway to the local roadway network.

Note: Map is a Graphical Representation Only

Note: Map is a Graphical Representation Only

2023 No Widening Through Stoney Community Operations

We understand that there is a community desire to minimize impacts to the Stoney Community from the US 278 Comidor Improvements. Figure 67 shows the parcelmap of the Stoney Community provided in the US 278 Coridor Improvements EA Appendix M as Figure 17.

Current Parcel Map Showing Long Lot Parcels the Stoney Community

(Source: Beaufort County, 2020; Bing Maps Imagery 2018)
Figure 67: Parcel Map of the Stoney Community
An additional scenario was examined to understand traffic operations if the proposed SCDOTproject were built with no roadway widening through the Stoney Community. This scenario would maintain 4 through lanes (2 in each direction) on US 278 through this a rea. Figure 68 shows a VISSIM screenshot of the roadway geometry with 4 lanes through the Stoney community while maintaining the proposed SCDOTimprovements and CBB recommendations in the remainder of the project area.

Figure 68: potential roadway geometry of 4 lanes within Stoney community
The 2023 No Widening Through Stoney Community VISSIM evaluations a re illustrated in Exhibit 9 for the AM peak hour and Exhibit 10 for the PM peak hour. Table 16 summa rizes the travel time results for the US 278 and Cross Island Parkway comidors under 2023 No Widening Through Stoney Community conditions.

Table 16: 2023 No Widening Through Stoney Community VISSIM Travel Times

Direction	AM (Minutes)		PM (Minutes)	
	2023 No-Build	2023 No Widening Through Stoney Community	2023 No-Build	2023 No Widening Through Stoney Community
EB US 278	19.6	24.4	9.7	9.5
WB US 278	8.6	8.8	29.0	30.6
NB Cross Island Parkway	6.7	6.5	17.0	32.2
SB Cross Island Parkway	8.9	7.3	7.5	7.4

Under 2023 No Widening Through Stoney Community conditions:

- The eastbound US 278 travel time increases by 24% from 2023 No-Build AM conditions,
- The westbound US 278 travel time increases by 5% from 2023 No-Build PM conditions, and
- The northbound Cross Island Parkway travel time increases by 89% from 2023-No-Build PM conditions.

The additional roadway capacity provided by SCDOTa nd Downstream Improvements a llows vehic les to reach the Squire Pope Road intersection more quickly than the existing roadway configuration. However, the reduced capacity at the Squire Pope Road intersection causes extensive queues and slower speeds which also increases the travel times.

- Figure 69 shows the VISSIM link speeds at the Squire Pope Road intersection during the AM peak hour. As shown, the eastbound US 278 approach at Squire Pope Road has a speed of less than 20 mph .
- Figure 70 shows the VISSIM link speeds at the Crosstree Drive intersection during the AM peak hour. As shown, the eastbound US 278 approach at Crosstree Drive has a speed of less than 10 mph.
- Figure 71 showsthe VISSIM link speedsalong westbound US 278 between Squire Pope Road and J arvis Park Road during the PM peak hour. As shown, westbound US 278 generally has speeds between 5 and 10 mph .

Table 17 summarizes the network performance measures under 2023 No Widening Through Stoney Community conditions. During the AM and PM peaks, the network performance measures are expected to degrade from 2023 No-Build to 2023 No Widening Through Stoney Community conditions caused by the 4 lane US 278 configuration.

Table 17: 2023 No Widening Through Stoney Community Vissim Network Results

Scenario	Average Delay (Seconds)	Average Speed (MPH)	Total Delay (Hour)	Unmet Demand (Vehicles)
2023 No-Build AM	216.2	27.1	709	0
2023 No Widening Through Stoney Community AM	303.4	22.4	1012	0
2023 No-Build PM	346.2	20.1	1324	677
2023 No Widening Through Stoney Community PM	405.0	17.8	1577	568

Reducing capacity at the Squire Pope Road intersection to maintain 4 through lanes (2 in each direction) on US 278 within the Stoney community is expected to result in a bottleneck along the peak directions of the US 278 corridor during the AM and PM peaks similar to 2023 No-Build conditions.

US 278 Comidor Independent Review Beaufort County, South Carolina September 2023

Figure 71: VISSiM Speeds on Westbound US 278- Squire Pope to Jarvis Park- 2023 No Widening Through Stoney Community PM

Note: Map is a Graphical Representation Only.

Note: Map is a Graphical Representation Only

Traffic Forecasts

The SCDOT Environmental Assessment Study determined a forecasted traffic growth rate of 1.19%. To determine if the 1.19% growth rate is a reasonable rate, CBB obtained historical traffic volumes on the US 278 comidor from the SCDOT count website. Figure 72 illustrates the historic and the forecasted Average Annual Daily Traffic (AADT) forthe US 278 comidor based on the 1.19% growth rate. As shown, the US 278 comidor has experienced steady annual traffic growth since 2010, except for 2020, which wasa result of the COVID-19 pandemic. A trend line was added based on the historic al AADTbetween 2010 and 2022 without 2020.

As previously mentioned, the 2023 volumes collected by CBB are, on average, within 3% of the 2018 Design Year traffic volumes collected in the SCDOT Environmental Assessment Study. However, as shown in Figure 72, the AADThas grown by approximately 4,400 vehic les per day (or 8\%) from 2018 to 2023. The signific ant growth in AADT, but not peak hour volumes, is caused by the existing capacity constraints along the US 278 comidor. The current peak hour demands are higher than the current capacity provided by the US 278 comidor which constrains the number of vehic les the US 278 comidor can accommodate during the peak hours.

The SCDOT Environmental Assessment Study developed the 2045 forecasted AADT by applying an annual compounded growth rate of 1.19% to their 2018 traffic counts, which would be an overall growth rate of approximately 37.6% over 27 years. The 2045 CBB forec asted AADT was developed by applying an annual compounded growth rate of 1.19% to our 2023 traffic counts, which would be an overall growth rate of approximately 29.7% over 22 years. As shown in Figure 72, the 2045 EA AADTand the 2045 CBB AADT are similar even though both values were developed based on different count years. Furthermore, both 2045 forecasts are slightly higher than the trend line developed based on historic al data. Thus, the 1.19% growth rate is a reasonable rate.
The SCDOTEnvironmental Assessment Study developed the 2045 No-Build traffic volumes by applying an annual compounded growth rate of 1.19% to their 2018 traffic counts, which would be an overall growth rate of approximately 37.6% over 27 years. CBB applied an a nnual compounded growth rate of 1.19% to our 2023 traffic counts for 27 years and developed 2050 Build traffic volumes to have a consistent growth timeframe. The 2050 Build traffic volumes have an overall growth rate of approximately 37.6%. 2050 Build traffic volumes are summarized in Exhibit 11. The 2050 Build traffic volumes are generally within 4% of the 2045 No-Build traffic volumes developed in the SCDOT Environmental Assessment Study.

[^2]Page left intentionally blank

Note: Map is a Graphical Representation Only.

Future Growth Analysis

CBB ran future year VISSIM models of the SCDOTEA preferred altemative updated with the following changes disc ussed in previous sections of this study report:

- Restriping of the Gumtree Road intersection to allow for three eastbound through lanes, and
- The assumption of the Sea Pines Circle converted to a signa lized intersection to allow traffic to flow through this part of the traffic model.
We ran these models in 5-year increments from 2025 to 2050 to explore the long-term operations of the proposed improvements. The results of this a nalysis are provided in the following sections.

AM Peak Period Future Growth Analysis

Several performance measures are included in the AM peak period (6:30 AM to 9:30 AM) future growth a na lysis. First, Figure 73 (Eastbound US 278 AM Hourly Peak Period Throughput Volume) providesmoming peak hour throughput volumes on eastbound US 278 for both historical data (2013-2022) a nd future years out to 2050 as generated by the VISSIM models. Historically, eastbound US 278 throughput volumes increased steadily from 2,300 vph to 2,600 vph between 2012 and 2018 and leveled off at a round 2,600 vph between 2018 and 2022. This is indic ative of US 278 reaching its moming peak hour capacity around 2018. The proposed SCDOTproject will increase the roadway's capacity from 2,600 vph to $3,600 \mathrm{vph}$. The VISSIM modeling shows AM peak hour throughput volumes growing from the current value of 2,600 vph to the new capacity of 3,600 vph by 2045 and leveling off at around 3,600 vph when US 278 reaches its new capacity.

Figure 74 (AM Peak Period Unmet Demand) providesVISSIM unmet demand calculationsforthe various scenarios. Unmet demand in VISSIM modeling reflects the number of vehicles that are unable to enter a facility at the end of a model run because the facility is at capacity and cannot accommodate additional vehic les. The unmet demand represents the vehicles that are "in line" waiting to enter the model at the end of this period. The AM build models show zero unmet demand from 2023 to 2035. However, the unmet demand increases to 39 in 2040 and 154 vehicles in 2045. The 2040 and 2045 unmet demand is specifically at Gumtree Road, indicating that this intersection is nearing capacity. The AM peak period unmet demand increasesat a greater rate in the 2050 build model to 473 vehicles. By 2050 the VISSIM models a re showing traffic queueing back to Bluffton Parkway from the traffic signals at Squire Pope Road, Gumtree Road, and the Business US 278 traffic signals.

As shown in Figure 75 (Travel Time), the eastbound US 278 AM peak period travel time is expected to inc rease between 2023 Build and 2050 Build conditions due to the inc rease in vehic les on the roadway. When the SCDOT improvements are first made travel times will drop from about 16 minutes (current a verage travel times between 6:30 AM to 9:30 AM), to a round 10 minutes. Travel times will inc rease to current no-build levels by the 2040 timeframe.

Fina lly, Figure 76 (Eastbound US 278 AM Speed Heat Map) provides heat speed plots for eastbound US 278 during the moming peak period. The colors on this map denote speeds on various roadway segments in 15 -minute intervals through the moming peak period. This map shows a significant improvement to traffic operations when the SCDOTproject is opened. The red portions of the graph (speeds of 10 mph and lower) and orange (speeds between 11 mph and 20 mph) improve to yellow (speeds between 21 mph and 30 mph) and green (speeds above 30 mph). By the 2040 timeframe, however, the maps start to show a degrading of speeds at the traffic signals at Squire Pope Road,

Gumtree Road, and the eastem part of Business US 278. The queues from these traffic signals begin to spill back to Bluffton, as occurs today.
Capacity failures in the moming peak traffic period occur at 2 major points in the VISSIM models. First, vehic les traveling on eastbound US 278 pass through the Squire Pope Road and Spanish Wells Road traffic signals whether they are traveling to destinations along Business US 278 to the east or the Cross Island Parkway to the south. The Squire Pope Road and Spanish Wells Road traffic signals become the primary bottleneck on this section of US 278 as they are today. Second, Business US 278 is a four-lane signalized comidor after Gumtree Road. This section of roadway becomes congested with the a ntic ipated future traffic growth. One strategy to keep Business US 278 from becoming congested is to divert more traffic to the Cross Island Parkway. Another strategy is to slow the future growth of traffic on US 278 through Travel Demand Management (TDM) strategies (see Extending the Life of Improved US 278, page 111).

Figure 73: Eastbound US 278 am Hourly Peak Period Throughput Volume

Figure 74: AM Peak Period Unmet Demand

Figure 75: Eastbound US 278 AM Peak Period Travel Time

DRAFT

	Section	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15
	EB US 278 Start to Moss Creek Drive	35	29	13	7	8	25	33	34	36	36	36	36
	Moss Creek Drive to Salt Marsh Drive	41	28	8	8	9	12	19	41	43	43	43	43
	Salt Marsh Drive to Fording Island Road Extension	43	26	8	9	10	11	17	39	45	44	45	45
	Fording Island Road Extension to Bluffton Parkway Interchange	49	25	11	13	13	12	13	26	48	52	52	52
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge	49	39	23	29	29	25	25	31	46	52	52	52
	Pinckney Wildlife Refuge to Blue Heron Point Road	50	35	23	28	27	25	25	27	42	51	51	51
	Blue Heron Point Road to Crosstree Drive	44	29	24	27	27	24	24	27	38	46	46	47
	Crosstree Drive to Jenkins Road	47	27	25	27	27	24	24	27	38	47	47	47
	Jenkins Road to Squire Pope Road	37	23	25	26	25	24	24	27	32	42	43	43
	Squire Pope Road to Spanish Wells Road	35	29	32	32	26	25	23	21	24	31	31	34
	Spanish Wells Road to Gumtree Road	26	16	11	11	10	7	6	6	6	10	25	29
	Gumtree Road to Jarvis Park Road	38	33	38	37	27	23	26	27	27	26	26	30
	Jarvis Park Road to Museum Street	32	25	31	31	28	21	25	24	25	22	28	28
	Museum Street to Indigo Run Drive	34	32	34	34	29	27	30	31	32	31	31	34
	Indigo Run Drive to EB US 278 End	45	45	45	45	45	45	45	45	45	45	45	45

	Section
	EB US 278 Start to Moss Creek Drive
	Moss Creek Drive to Salt Marsh Drive
	Salt Marsh Drive to Fording Island Road Extension
	Fording Island Road Extension to Bluffton Parkway Interchange
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Crosstree Drive
	Crosstree Drive to Squire Pope Road
	Squire Pope Road to Spanish Wells Road
	Spanish Wells Road to Gumtree Road
	Gumtree Road to Jarvis Park Road
	Jarvis Park Road to Museum Street
	Museum Street to Indigo Run Drive
	Indigo Run Drive to EB US 278 End

2025 AM Build											
$6: 30$	$6: 45$	$7: 00$	$7: 15$	$7: 30$	$7: 45$	$8: 00$	$8: 15$	$8: 30$	$8: 45$	$9: 00$	$9: 15$
36	31	34	36	34	35	35	35	36	36	36	37
44	44	44	44	44	44	44	44	44	44	44	44
45	45	45	45	45	45	45	45	46	46	45	46
52	51	52	52	53	52	52	52	53	53	53	53
52	51	52	52	53	53	53	53	53	53	53	53
48	45	43	48	49	48	48	48	49	49	49	50
41	31	16	22	38	40	41	42	43	43	44	44
31	21	19	19	21	28	27	30	31	30	33	32
30	29	27	29	27	27	29	29	27	28	28	29
33	19	22	28	16	18	20	24	23	23	27	27
30	21	24	29	21	20	21	25	25	23	28	30
36	31	32	34	27	30	32	31	34	32	33	34
45	45	45	45	45	44	45	45	45	45	45	45

2030 AM Build

	Section	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15
	EB US 278 Start to Moss Creek Drive	35	29	33	36	34	34	34	34	36	36	36	36
	Moss Creek Drive to Salt Marsh Drive	44	44	44	44	44	44	44	44	44	44	44	44
	Salt Marsh Drive to Fording Island Road Extension	45	45	45	45	45	45	45	45	46	45	46	45
	Fording Island Road Extension to Bluftton Parkway Interchange	52	51	52	52	52	52	52	52	53	53	53	53
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge	52	51	52	52	52	52	53	52	53	53	53	53
	Pinckney Wildlife Refuge to Crosstree Drive	48	42	29	33	46	47	47	48	49	48	49	49
	Crosstree Drive to Squire Pope Road	40	29	14	14	16	29	39	42	43	43	43	43
	Squire Pope Road to Spanish Wells Road	30	21	18	18	15	18	23	29	30	29	32	30
	Spanish Wells Road to Gumtree Road	29	27	26	30	28	23	18	25	26	27	29	29
	Gumtree Road to Jarvis Park Road	31	17	20	27	16	11	12	17	21	22	22	28
	Jarvis Park Road to Museum Street	29	22	24	29	20	19	20	23	25	26	24	26
	Museum Street to Indigo Run Drive	34	32	30	33	29	27	27	29	33	33	33	33
	Indigo Run Drive to EB US 278 End	45	45	45	45	45	45	45	45	45	45	45	45

	Section	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15
	EB US 278 Start to Moss Creek Drive	35	28	31	35	33	34	33	34	35	36	36	35
	Moss Creek Drive to Salt Marsh Drive	44	43	44	44	44	44	44	44	44	44	44	44
	Salt Marsh Drive to Fording Island Road Extension	45	45	45	45	45	45	45	45	45	45	45	46
	Fording Island Road Extension to Bluftton Parkway Interchange	52	51	51	52	52	52	52	52	53	53	53	53
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge	52	51	51	51	52	52	52	52	53	53	53	53
	Pinckney Wildlife Refuge to Crosstree Drive	47	39	18	15	16	30	38	47	49	48	49	49
	Crosstree Drive to Squire Pope Road	40	26	14	13	13	13	14	26	42	42	43	43
	Squire Pope Road to Spanish Wells Road	28	19	17	18	15	15	15	17	25	30	30	30
	Spanish Wells Road to Gumtree Road	28	25	23	29	25	16	10	8	9	23	27	28
	Gumtree Road to Jarvis Park Road	32	14	18	24	16	11	10	12	11	18	22	26
	Jarvis Park Road to Museum Street	28	21	24	26	19	16	18	20	22	22	25	24
	Museum Street to Indigo Run Drive	36	30	30	33	29	27	28	28	29	29	30	31
	Indigo Run Drive to EB US 278 End	45	45	45	45	45	45	45	45	45	45	45	45

2035 AM Build

	Section
	EB US 278 Start to Moss Creek Drive
	Moss Creek Drive to Salt Marsh Drive
	Salt Marsh Drive to Fording Island Road Extension
	Fording Island Road Extension to Bluffton Parkway Interchange
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Crosstree Drive
	Crosstree Drive to Squire Pope Road
	Squire Pope Road to Spanish Wells Road
	Spanish Wells Road to Gumtree Road
	Gumtree Road to Jarvis Park Road
	Jarvis Park Road to Museum Street
	Museum Street to Indigo Run Drive
	Indigo Run Drive to EB US 278 End

2040 AM Build

6:30	$6: 45$	$7: 00$	$7: 15$	$7: 30$	$7: 45$	$8: 00$	$8: 15$	$8: 30$	$8: 45$	$9: 00$	$9: 15$

2045 AM Build

	Section	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15
	EB US 278 Start to Moss Creek Drive	34	22	25	33	33	33	33	33	34	35	35	34
	Moss Creek Drive to Salt Marsh Drive	44	44	44	44	44	44	44	44	44	44	44	44
	Salt Marsh Drive to Fording Island Road Extension	45	44	45	45	45	45	45	45	45	45	45	45
	Fording Island Road Extension to Bluftton Parkway Interchange	52	50	42	19	24	25	25	29	34	42	47	52
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge	51	50	19	11	11	10	10	10	11	13	18	40
	Pinckney Wildlife Refuge to Crosstree Drive	46	34	13	12	12	10	11	11	11	11	13	17
	Crosstree Drive to Squire Pope Road	37	20	12	13	13	12	13	12	12	12	13	14
	Squire Pope Road to Spanish Wells Road	25	17	16	18	15	14	13	13	12	14	13	15
	Spanish Wells Road to Gumtree Road	26	23	17	25	26	12	7	6	6	7	7	9
	Gumtree Road to Jarvis Park Road	31	14	16	21	16	9	9	10	11	10	11	13
	Jarvis Park Road to Museum Street	29	19	24	25	20	17	17	18	21	17	21	22
	Museum Street to Indigo Run Drive	33	26	26	30	25	21	23	26	30	28	27	27
	Indigo Run Drive to EB US 278 End	45	45	45	45	45	45	45	45	45	45	45	45

2050 AM Build

	Section
	EB US 278 Start to Moss Creek Drive
	Moss Creek Drive to Salt Marsh Drive
	Salt Marsh Drive to Fording Island Road Extension
	Fording Island Road Extension to Bluffton Parkway Interchange
	Bluffton Parkway Interchange to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Crosstree Drive
	Crosstree Drive to Squire Pope Road
	Squire Pope Road to Spanish Wells Road
	Spanish Wells Road to Gumtree Road
	Gumtree Road to Jarvis Park Road
	Jarvis Park Road to Museum Street
	Museum Street to Indigo Run Drive
	Indigo Run Drive to EB US 278 End

$6: 30$	$6: 45$	$7: 00$	$7: 15$	$7: 30$	$7: 45$	$8: 00$	$8: 15$	$8: 30$	$8: 45$	$9: 00$	$9: 15$
33	20	20	32	32	32	33	33	34	34	34	34
44	43	44	38	38	44	44	44	44	44	44	44
45	44	43	23	22	45	45	45	45	45	45	45
51	50	24	10	12	21	20	25	26	31	31	42
51	49	14	11	11	10	10	10	10	10	11	11
45	30	12	12	12	10	10	10	10	10	11	10
34	17	12	13	12	11	12	11	12	12	12	12
23	16	16	17	15	14	12	12	12	13	12	14
26	23	18	23	20	9	6	6	6	6	6	7
29	16	16	22	13	9	9	10	11	10	11	12
31	20	24	26	18	15	18	17	20	19	21	20
32	26	26	32	26	18	19	27	28	28	27	25
45	45	45	45	45	45	45	45	45	45	45	45

PM Peak Period Future Growth Analysis

As with the AM peak period analysis, several performance measures are included in the PM peak period (3:00 AM to 6:00 PM) future growth a nalysis. First, Figure 77 (Westbound US 278 PM Hourly Peak Period Throughput Volume) provides evening peak hour throughput volumes on westbound US 278 for both historical data (2013-2022) and future years out to 2050 as generated by the VISSIM models. Historically, westbound US 278 throughput volumes increased steadily from 2,650 vph to 2,950 vph between 2013 and 2016 and leveled off at a round 2,950 vph between 2016 and 2022. This is indic ative of US 278 reaching its evening peak hour capacity around 2016. The proposed SCDOT project will increase the roadway'scapacity from 2,950 vph to a round $3,800 \mathrm{vph}$. The VISSIM modeling shows PM peak hour throughput volumes growing from the current value of $2,950 \mathrm{vph}$ to $3,750 \mathrm{vph}$ by 2050.

Figure 78 (PM Peak Period Unmet Demand) provides the unmet demand calculations for the various scenarios. The PM build models show less than 5 vehic les of unmet demand from 2023 to 2045 . Unmet demand spikes to 262 vehic les in 2050. In the 2050 models, the traffic volume is not able to enter the model from the model inputs on westbound Business US 278 at Indigo Run. This section of Business US 278 is at capacity. As with the moming peak period a nalysis, one strategy to keep Business US 278 from becoming congested is to divert more traffic to the Cross Island Parkway. Cross Island Parkway has ample capacity with the only real bottleneck being at Sea Pines Circle.

As shown in Figure 79 (Travel Time), the westbound US 278 PM peak period travel time is expected to inc rease between 2023 Build and 2050 Build conditionsdue to the increase in vehicleson the roadway. When the SCDOT improvements are first made, travel times will drop from about 23 minutes (current average travel times between 3:00 PM to 6:00 PM) to a round 10 minutes. Travel times will increase to a round 13 minutes by the 2050 timeframe. One reason that PM travel times do not inc rease to existing travel times as they do in the moming peak period models is because the capacity constraints in the PM peak period models are at the eastem extents of the traffic models. These capacity constraints metertraffic into the models. Once the traffic passesthrough these capacity constrained areas, it flows smoothly through the rest of the network.

Figure 80 (Westbound US 278 PM Speed Heat Map) provides heat speed plots for westbound US 278 during the evening peak period. This map shows a signific ant improvement to traffic operations when the SCDOTproject is opened. By the 2040 timeframe, however, the mapsstart to show a degrading of speeds along Business US 278 from Indigo Run to the Squire Pope Road traffic signal. The Squire Pope Road and Spanish Wells Road traffic signals become a bottleneck because they process all traffic on westbound US 278 whether it comes from Business US 278 to the east or the Cross Isla nd Parkway. One strategy to improve thiscondition isto slow the future growth of traffic on US 278 through Travel Demand Management (TDM) strategies (see Extending the Life of Improved US 278, page 111).

Figure 77: Westbound US 278 PM Hourly Peak Period Throughput

Figure 78: PM Peak Period Unmet Demand

Figure 79: Westbound US 278 PM Peak Period Travel Time

DRAFT
2023 PM No-Build

	Section	3:00	3:15	3:30	3:45	4:00	4:15	4:30	4:45	5:00	5:15	5:30	6:00
	WB US 278 Start to Indigo Run Drive	33	27	25	12	5	4	3	4	5	6	8	24
	Indigo Run Drive to Museum Street	32	29	11	6	4	4	4	5	6	7	9	16
	Museum Street to Jarvis Park Road	27	20	8	6	6	5	6	7	8	8	10	16
	Jarvis Park Road to Gumtree Road	19	11	5	4	4	4	4	4	5	6	7	9
	Gumtree Road to Spanish Wells Road	35	14	6	5	5	5	5	5	6	7	7	8
	Spanish Wells Road to Squire Pope Road	24	10	8	8	8	8	8	8	8	8	8	8
	Squire Pope Road to Jenkins Road	46	46	46	46	46	46	46	46	46	46	46	46
	Jenkins Road to Crosstree Drive	47	46	47	47	47	47	47	47	47	47	46	47
	Crosstree Drive to Blue Heron Point Road	45	45	45	45	45	45	45	45	45	45	45	45
	Blue Heron Point Road to Pinckney Wildlife Refuge	52	52	52	52	52	52	52	52	52	52	52	52
	Pinckney Wildlife Refuge to Bluftton Parkway Interchange	51	52	52	52	52	52	52	52	51	52	52	51
	Bluffton Parkway Interchange to Fording Island Road Extension	52	52	52	52	52	52	52	53	52	53	52	52
	Fording Island Road Extension to Salt Marsh Drive	48	47	47	47	47	47	48	47	48	48	47	48
	Salt Marsh Drive to Moss Creek Drive	30	23	22	22	21	22	24	23	24	22	25	24
	Moss Creek Drive to WB US 278 End	45	45	45	45	45	45	44	45	44	44	45	45

	Section
3	WB US 278 Start to Indigo Run Drive
	Indigo Run Drive to Museum Street
	Museum Street to Jarvis Park Road
	Jarvis Park Road to Gumtree Road
	Gumtree Road to Spanish Wells Road
	Spanish Wells Road to Squire Pope Road
	Squire Pope Road to Crosstree Drive
	Crosstree Drive to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Bluffton Parkway Interchange
	Bluffton Parkway Interchange to Fording Island Road Extension
	Fording Island Road Extension to Salt Marsh Drive
	Salt Marsh Drive to Moss Creek Drive
	Moss Creek Drive to WB US 278 End

3:00	$\mathbf{3 : 1 5}$	$\mathbf{3 : 3 0}$	$\mathbf{3 : 4 5}$	$\mathbf{4 : 0 0}$	$\mathbf{4 : 1 5}$	$\mathbf{4 : 3 0}$	$\mathbf{4 : 4 5}$	$\mathbf{5 : 0 0}$	$\mathbf{5 : 1 5}$	$\mathbf{5 : 3 0}$	$6: 00$
32	26	25	30	30	25	25	29	32	32	33	33
31	26	27	32	32	30	26	29	35	34	36	34
27	20	19	24	22	18	17	22	25	24	26	27
22	15	18	23	22	16	18	20	22	22	22	22
35	29	23	30	30	29	31	30	31	32	34	38
39	27	25	27	28	27	28	31	31	32	33	33
43	41	43	43	43	41	42	43	44	44	44	44
51	50	50	50	50	50	50	50	50	51	51	51
52	51	51	51	51	52	51	52	52	52	52	53
53	52	52	52	53	53	53	53	53	53	53	54
47	44	38	45	47	48	48	48	48	48	48	49
30	21	18	21	20	24	24	27	29	23	25	27
45	44	45	45	45	45	45	45	45	45	45	45

2030 PM Build

2035 PM Build

	Section	3:00	3:15	3:30	3:45	4:00	4:15	4:30	4:45	5:00	5:15	5:30	6:00
	WB US 278 Start to Indigo Run Drive	31	18	11	15	18	15	9	9	15	31	31	33
	Indigo Run Drive to Museum Street	30	21	14	16	18	16	15	15	21	32	34	36
	Museum Street to Jarvis Park Road	24	16	16	15	16	13	12	14	15	25	24	28
	Jarvis Park Road to Gumtree Road	20	15	18	21	16	15	18	15	17	20	19	21
	Gumtree Road to Spanish Wells Road	34	23	19	20	22	29	30	27	27	28	30	34
	Spanish Wells Road to Squire Pope Road	39	31	26	25	25	27	28	29	31	30	31	35
	Squire Pope Road to Crosstree Drive	42	40	40	41	40	41	41	41	42	43	44	44
	Crosstree Drive to Pinckney Wildlife Refuge	51	50	50	50	50	50	50	50	50	50	50	51
	Pinckney Wildlife Refuge to Bluffton Parkway Interchange	52	51	51	51	51	51	51	51	52	52	52	52
	Bluffton Parkway Interchange to Fording Island Road Extension	53	52	52	52	52	53	53	53	53	53	53	53
	Fording Island Road Extension to Salt Marsh Drive	48	44	39	43	42	46	48	48	48	48	48	48
	Salt Marsh Drive to Moss Creek Drive	29	18	16	17	16	18	19	20	22	22	24	27
	Moss Creek Drive to WB US 278 End	45	45	45	45	45	45	45	45	45	44	45	45

2040 PM Build

	Section
	WB US 278 Start to Indigo Run Drive
	Indigo Run Drive to Museum Street
	Museum Street to Jarvis Park Road
	Jarvis Park Road to Gumtree Road
	Gumtree Road to Spanish Wells Road
	Spanish Wells Road to Squire Pope Road
	Squire Pope Road to Crosstree Drive
	Crosstree Drive to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Bluffton Parkway Interchange
	Bluffton Parkway Interchange to Fording Island Road Extension
	Fording Island Road Extension to Salt Marsh Drive
	Salt Marsh Drive to Moss Creek Drive
	Moss Creek Drive to WB US 278 End

$\mathbf{3 : 0 0}$	$\mathbf{3 : 1 5}$	$\mathbf{3 : 3 0}$	$\mathbf{3 : 4 5}$	$\mathbf{4 : 0 0}$	$\mathbf{4 : 1 5}$	$\mathbf{4 : 3 0}$	$\mathbf{4 : 4 5}$	$\mathbf{5 : 0 0}$	$\mathbf{5 : 1 5}$	$\mathbf{5 : 3 0}$	$6: 00$
30	15	8	8	8	7	7	7	8	14	31	32
28	18	12	14	13	12	12	14	14	16	27	34
22	14	15	15	14	12	11	13	14	12	20	28
19	13	17	21	16	15	17	15	17	19	17	24
33	21	17	18	20	27	26	24	28	29	29	29
38	31	26	24	23	25	28	28	27	27	30	32
42	39	40	42	41	42	43	43	43	43	43	44
51	50	50	50	50	50	50	50	50	50	50	51
52	51	51	51	51	50	51	51	51	51	51	52
53	52	51	52	52	53	53	53	53	53	53	53
48	44	33	40	36	43	47	47	48	47	48	48
27	16	15	17	14	16	18	19	24	23	24	21
45	45	45	45	45	45	45	45	45	45	45	45

2045 PM Build

	Section
	WB US 278 Start to Indigo Run Drive
	Indigo Run Drive to Museum Street
	useum Street to Jarvis Park Road
	Jarvis Park Road to Gumtree Road
	Gumtree Road to Spanish Wells Road
	Spanish Wells Road to Squire Pope Road
	Squire Pope Road to Crosstree Drive
	Crosstree Drive to Pinckney Wildlife Refuge
	Pinckney Wildlife Refuge to Bluffton Parkway Interchange
	Bluftton Parkway Interchange to Fording Island Road Extension
	Fording Island Road Extension to Salt Marsh Drive
	Salt Marsh Drive to Moss Creek Drive
	Moss Creek Drive to WB US 278 End

2050 PM Build

Extending the Life of Improved US 278

As displayed in the previous section, the proposed SCDOTUS 278 Comidor Improvements will increase roadway capacity, reducing congestion and improving travel time reliability during the moming and evening traffic peak periods. The proposed SCDOTimprovements will have a long-term benefit for the Hilton Head Island community by increasing the traffic capacity of US 278 and improving traffic operations. However, there is a limit on how much future traffic growth can be accommodated by the proposed project.

CBB agrees that SCDOT's future year traffic forecasts are reasonable and consistent with historical growth trends and ongoing local development. However, the local Hilton Head Island community can influence how this growth occurs. Specifically, traffic can be shifted to other travel modes through Travel Demand Management (TDM) strategies. We see opportunities to create functional and attractive altematives to single vehicle travel through investments in programs that promote public transportation/shuttles, micro-mobility (e.g., e-bikes), and park-and-ride/car-pool systems. Hilton Head Island already has the foundational elements for these types of systems to build upon.

TDM strategies can slow the traffic growth by shifting some future travel growth to other travel modes. Slowing the future growth of traffic on US 278 will extend the road's long-term functionality. TDM will not negate the need for the SCDOT US 278 Comidor Improvements project but can help to extend its functional life.

Summit County Case Study

An example of a tourist-oriented community that is proactively promoting TDM is Summit County, Colorado. Summit County is home to several popular ski resorts, like Arapahoe Basin, Breckenridge, Copper Mounta in, and Keystone. The area brings in millions of visitors each year, with Breckenridge alone attracting approximately 1.5 million visitors each year. There has been a signific ant growth in traffic both in the Summitt C ounty region and on I-70, which is the primary highway connecting Summitt County to the DenverCommunity and Colorado'sfront range. I-70 is often congested during the winter months with people driving to Summit County and other regional ski resorts.

One way in which Summit County is dealing with this traffic is with the Summit Stage, the area's transit system ${ }^{4}$. The system began in 1977 initially asa service formoving skiers from their lodgingsto the slopes. Due to the popula rity of the system, Summit County hascontinuously expanded the system. Today, the system includes 28 buses and is used by both tourists coming to ski a nd commuters who live in the a rea and work at the area's ski resorts. The transit system has become a popular way to get around, with ridership steadily inc reasing over the years. Ridership has grown from a round 432,000 a nnual trips in 1992 to a round 1.7-1.9 million a nnual trips today, making Summit Stage the second busiest rural transit system in Colorado. A Summitt Stage route map is provided in Figure 81.

Summit Stage's success can be attributed to several things, with one being its convenience. To avoid searching for and possibly paying for parking at ski resorts, tourists use the Summit Stage to get to ski resorts without the hassle of parking. The stable revenue source for the Summit Stage has also contributed to the system's success, with funding coming from a sales tax in the area. The revenue

[^3]source for the Summit Stage is so stable that users of the system can ride for free, which is another reason why the system is so popular.

Figure 81: Summit Stage Route Map ${ }^{5}$
Summit Stage service is supplemented by several private shuttle services that bring skiers from Denver to Summitt County. A few of these servic es include:

- https://www.summitexpress.com/
- https://www.mounta inshuttle.com/
- https://www.mtnshuttle.com/
- https://www.epicmounta inexpress.com/
- https://freshtrackstransportation.com/

The result is a system by which people can travel to and around Summitt County without a car.
While the system is relatively successful, Summit County's 2020 Short Range Transportation Plan ind ic a testhat there is still room for improvement within the system. One area in which the Summit Stage system currently struggles is the ac cessibility of bus stops. Many in the a rea compla in that bus stopsare

[^4]not located close to where they live. Solutions to this include expanding the bus routes or creating park-and-ride lots, which would allow users of the Summit Stage to drive a short distance to a stop, where they could then take the busthe rest of the way to their destination. The park-and-ride is already being used in some places within Summit County and seems to be a popular option. Another area within the Summit Stage system that the 2020 transportation plan indicates will be getting more attention is the balance of service provided between tourists and commuters. While skiers and snowboarders are the primary group using the Summit Stage, the needs of commuters should be prioritized as well, especially since the commuters are often employees of the ski resorts that work to keep the ski resorts functioning. If employees of the ski resorts cannot reach the ski resorts due to the lack of transit service, ski resorts cannot function.

Summit County Colorado is an example of a town that has faced many of the same issues as Hilton Head Island, including issues with their transportation systems and their capacity to deal with high levels of tourists as well as commuters. In Summit County, the Summit Sta ge transit system has been a major part of a solution.

TDM Solutions for Hilton Head Island

As previously disc ussed, Hilton Head Island has a starting point to develop a functional and attractive multi-modal system to provide people with an altemative to using an automobile. Hilton Head Island has 120 miles of public and private bike pathways offered throughout the island. The Lowcountry Regional Transportation Authority operates Palmetto Breeze with 40 buses and 19 routes, 10 of which provide senvice to and/or within the Town of Hilton Head Island. There are other local shuttle services that provide additional mobility. As with Summit County Colorado, these systems can be built upon to absorb future travel growth. Given current growth trends, CBB recommendsthe adoption of a goal to shift 10% of total trips to other modes of travel by 2045. It will take a deliberate effort, but we believe that goal is a chievable.

CBB interviewed Palmetto Breeze Executive Director and General Manager Mary Lou Franzonito shed light on Palmetto Breeze's aspirationsto inc rease transit usage in the Lowcountry. Ms. Franzoni believes that transit can play a vital role in a region's transportation network. However, the importance and benefits of transit are not being fully understood in the Lowcountry region. The Palmetto Breeze commuter bus service has provided access to better employment opportunities in Hilton Head Island to those living in outlying counties. There has also been signific a nt population growth in the Hilton Head region, especially since the pandemic. That growth is expected to continue with future dense development anticipated to be concentrated around the US-278 loop.

The biggest challenge to Palmetto Breeze is limited funding. There is not a dedicated localtax funding the service like there isformost transit agencies. Even now, the FTA 5307 and 5311 grants cannot cover the full cost of operations for the Palmetto Breeze. The rest of funding largely comes from local sources, including the Town of Hilton Head Island and Beaufort County, who Palmetto Breeze often needs to convince each yearto continue providing adequate funding. A salestax referendum will be on local ballots in 2024 for Lowc ountry voters to decide to provide a consistent stream of funding for Palmetto Breeze and reduce its reliance on other sources. There was a similar referendum a few years ago, but it was pulled before the day of polling. Ms. Franzoni strongly believes that the ballot measure passing would bring substantial, positive change for Palmetto Breeze and its ability to provide transit services.

Ridership and expansion were two topics discussed at considerable length with Ms. Franzoni. Future commuter senvice expansions have been hard to predict lately. Traditionally, Allendale County, for example, has supplied a large number of workers for Hilton Head Island, despite the long commute. But recently, there has been a shift wherein there are more job altematives for those who would nomally commute from far away. Currently and for the foreseeable future, there may not be enough ridership demand to expand the commuter route headways from one AM and one PM run, much less to different parts of the county. Expansion of commuter service is usually done when a locality requests (and pays for) service.

The Hilton Head Island Breeze Trolley (Route 505) began in 2018 as a solution to summer traffic issues during peak tourist season. The idea is that the trolley would take riders to popular tourist destinations, reduc ing the need forparking and short motorized vehicle trips. It is estimated that the Trolley eliminates 15,000-16,000 personal vehicle trips during its run between April 1 and Labor Day. Palmetto Breeze would like to operate the service during a longer season, but there is not currently funding available to do so. The goal is for it to reach 65,000 riders. During the 2021 and 2022 seasons, ridership was about 52,000 and 48,000 respectively. To achieve this ridership goal, Palmetto Breeze adjusted the Trolley's schedule to match that of regional commercial jets that flew into Hilton Head Island airport. Unfortunately, a signific ant a mount of regional a ir service has been cut from Hilton Head Isla nd aiport, so that source of ridership is curently limited. However, the aiport has sec ured funding for a signific ant expansion that should begin within the next five years. There should be significant opportunity to capita lize on ridership from the predicted new a ir service once the terminal expansion is complete.

Most people who fly to Hilton Head Island travel through the larger Savannah-Hilton Head Island Airport. Palmetto Breeze has explored a route to this airport but found the logistics too challenging. Finding enough local match has been tricky and crossing state lines into Georgia makesthings diffic ult.

The Bluffton Breeze began operating local transit service to the Bluffton community in 2021. It aims to provide connectivity a mong the community'slarger employers and largest apartment complexes. So far, ridership has been low, a nd the route has been reformatted. Transit in Bluffton is somewhat tricky given the low-density of the built environment. However, Ms. Franzoni is optimistic and has an idea for how to increase ridership. Bluffton is home to several large retirement communities, both existing and under development, including Sun City, Hampton Hall, and Latitude Margaritaville. These present a significant ridership opportunity if appropriate connections can be made. The senior citizens populating these communities in many cases no longer wish to drive or are no longer capable of driving. Offering service between these communities and shopping and recreational opportunities is an opportunity for ridership growth. Furthemore, Ms. Franzoni noted that USCB offers classes to adults 60 and older. The Bluffton Breeze could take advantage of this by offering transit service from these retirement communities to the USCB campus.

One strategy to create a pathway for increasing ridership and transit's role in the greater Lowcountry transportation network is to increase connectivity a mong routes. The commuter routes are connected through the transfer center, but local senvice does not offer much connectivity to other routes on the system. One option considered was to connect the Breeze Trolley with the private Sea Pines Trolley. Palmetto Breeze actively looked at how to make such a connection work, including altemative locations for connections, but nothing has been implemented at this time.

Another option would be to connect the Breeze Trolley with the Bluffton Breeze. There has not been much movement on this lately, but SCDOT has considered building a park-and-ride where both the Bluffton Breeze and Breeze Trolley could have a stop. Having stops for both routes at a park-and-ride would a llow connectivity between Bluffton a nd Hilton Head. It would a lso allow commuters a nd visitors to park once to get to destinations in either Bluffton or Hilton Head. With the recent rise in short-term rental properties (Airbnb, VRBO, etc.), traffic congestion has increased. Such a park-and-ride could lessen the increase in traffic by offering such short-term visitors (generally without much luggage to camy) an ability to ditch their car and get a round by transit during their stay. Further into the future, Ms. Franzoni believestwo park-and-rides, one on eitherside of the US-278 bridge, would be beneficial. One option considered to circumvent the need for a dedicated park-and-ride parking lot is to partner with local businesses who already have large parking lots to offer. Walmart, for example, could be a resource forproviding park-and-ride opportunities without a dedic ated park-and-ride needed.

In a place largely built around the automobile, like Hilton Head, some incentive may be necessary to encourage visitors to use transit and a park-and-ride option. One of those may be by happenstance; the large public parking lot on the northeast comer of Pope Avenue and SForest Beach Drive is set to become a paid parking lot. If the commuter lot is free or costs less than this parking lot, that could encourage some, partic ularly those visiting for the day, to use the commuter lot.

Another incentive could be a bus-on-shoulder program. In essence, such programs allow transit buses to divert to the shoulder when congestion is encountered, allowing buses to bypass the congestion. The buses travel at a speed much lower than the speed limit on the shoulder for safety. This would require that the reconstructed US-278 bridges be built with a wide shoulder.

Ms. Franzoni believesthat anotherstrategy to provide viable transit for the Lowcountry is to offera dial-a-ride option with subscription service. This service would use sma ller buses or passenger vans and offer riders a direct ride to work without the need to run large buses a round the island.

Considering the research conducted on the Palmetto Breeze transportation network, the observations made during the site visit to Hilton Head Island and vicinity, and the phone interview with Mary Lou Franzoni, CBB is making the following recommendations as starting point for Bea ufort County and the Town of Hilton Head Island to help build a functional and attractive transit system to serve Hilton Head Island.

Thus, based on our analysis and discussions with Palmetto Breeze, we offer several short-term recommendations to improve the transit senvice to and on Hilton Head Island in Table 18. These enhancements would leverage the island's robust bicycle/pedestrian network and the proposed SCDOT US 278 multi-use path for a robust multi-modal transportation system that provides travel options.

Note - Travel Demand Managing strategies, like transit expansion, will not eliminate the need for the SCDOTUS 278 Comidor Improvements project. TDM strategies should be used alongside the project to help extend the project'sfunctional life.

Table 18: Hilton Head ISland tDM Recommendations

Recommendation:

- A dedicated local sales tax for transit
- Establish strategic park-and-ride locations

Result:

- Increased and stable funding to properly fund the service and increase its viability
- Visitors will "park once" at the park-and-ride and use transit to get around the island, lessening the number of automobile trips made
- If congestion returns and shoulders on the new US-278 bridge are wide enough, a bus-on-shoulder allows for transit service faster than a private automobile could provide, encouraging a reduction in automobile traffic
- Connect the Breeze Trolley with other local routes, such as the Bluffton Breeze and Sea Pines Trolley, and any similar, future service
- Increase marketing for branding and campaigns geared toward untapped ridership markets.
- Develop dial-a-ride service
- Develop new routes to untapped ridership markets, particularly retirement communities
- Develop and work with partners to encourage transit ridership
- Increases the range of travel for riders in both Hilton Head Island and Bluffton.
- Transit can often be about form just as much as it is about function. If it looks fun to ride, people will be encouraged to ride it.
- The more people know about a service, the higher number of possible riders there will be.
- Provides more direct service for people to get to work
- Expanding local service to retirement communities could encourage residents to use transit
- Marketing doesn’t always reach everyone. Working with major employers, destinations, etc., to explore how transit could better serve them and how they could encourage their employees or patrons to use transit could increase ridership and remove some private automobiles from Hilton Head roadways
- Ensure adequate service is offered to the Hilton Head Island airport
- Many may prefer to skip the expense of renting a car or taxi/rideshare services when visiting a place. Ensuring adequate airport service to HHH and making travelers aware of the service will discourage the use of rental cars and taxi/rideshare services.

Acknowledgment

Thank you to all the representatives from the Town of Hilton Head Island, Beaufort County, and the South Carolina Department of Transportation who assisted in completing this project. This complex project would not have been able to be completed without their support. CBB ishonored to be given the opportunity to work on such an impactful project. We wish the best for this community.

US 278 Coridor Independent Review
U Beaufort County, South Carolina September 2023

Page left intentionally blank

Appendix A- Field Travel Time Data

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 278 AM-EB-001	$03 / 27 / 23$	$06: 33$	30573	Before	Primary
US 278 AM-EB-002	$03 / 27 / 23$	$07: 15$	30579	Before	Primary
US 278 AM-EB-003	$03 / 27 / 23$	$08: 02$	30685	Before	Primary
US 278 AM-EB-004	$03 / 27 / 23$	$06: 42$	30468	Before	Primary
US 278 AM-EB-005	$03 / 27 / 23$	$07: 20$	30457	Before	Primary

Study Name : US 278 EB AM Study Date : 3/27/2023
Page No. : 1
Node Info

$\#$	Len	Name
1	0	Buckingham Plantation
2	19543	Squire Pope Road
3	2225	Wild Horse Road
4	3051	Gumtree Road
5	1573	Wilborn Road
6	1237	Museum Street
7	3100	Indigo Run Drive

Length of Study Route $=30,729$ feet

Notes:

AM EB

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Overall Output Statistics
Study Name : US 278 EB AM
Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time $<=$ $\mathbf{3 5} \mathbf{~ M P H ~}$	Time <= $\mathbf{4 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
$\mathbf{1}$	0	Buckingham Plantation Drive							
2	19543	Squire Pope Road	910.4	17.2	14.6	668.0	884.0	909.2	910.4
3	2225	Wild Horse Road	55.8	0.4	27.2	27.8	31.4	55.8	55.8
4	3051	Gumtree Road	93.2	0.6	22.3	55.2	56.4	87.2	93.2
5	1573	Wilborn Road	33.4	0.0	32.1	13.4	20.8	33.4	33.4
6	1237	Museum Street	21.4	0.0	39.4	5.8	3.4	20.6	21.4
7	3100	Indigo Run Drive	50.4	0.2	41.9	15.2	9.8	44.2	49.4
Total	$\mathbf{3 0 , 7 2 9}$		$\mathbf{1 1 6 4 . 6}$	$\mathbf{1 8 . 4}$	$\mathbf{1 8 . 0}$	$\mathbf{7 8 5 . 4}$	$\mathbf{1 0 0 5 . 8}$	$\mathbf{1 1 5 0 . 4}$	$\mathbf{1 1 6 3 . 6}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type	\#	Len	Name
US 278 AM-WB-001	03/27/23	06:17	30610	Before	Primary	12	0	Indigo Run Drive
							3100	Museum Street
US 278 AM-WB-002	03/27/23	06:59	30595	Before	Primary	3	1237	Wilborn Road
						4	1573	Gumtree Road
US 278 AM-WB-003	03/27/23	07:44	30630	Before	Primary	5	3051	Wild Horse Road
						6	2225	Squire Pope Road
US 278 AM-WB-004	03/27/23	06:22	30463	Before	Primary	7	19543	Buckingham Plantation
						Length of Study Route $=30,729$ feet		
US 278 AM-WB-005	03/27/23	07:45	30886	Before	Primary			

Notes:

WB AM

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Overall Output Statistics
Study Name : US 278 WB AM
Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time <= $\mathbf{3 5} \mathbf{~ M P H ~}$	Time <= $\mathbf{4 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	Indigo Run Drive							
2	3100	Museum Street	64.6	0.4	32.7	25.6	27.6	57.0	64.6
3	1237	Wilborn Road	26.4	0.0	31.9	10.6	15.8	26.4	26.4
4	1573	Gumtree Road	70.0	0.6	15.3	50.0	50.6	68.4	70.0
5	3051	Wild Horse Road	56.2	0.4	37.0	18.2	15.0	32.2	52.8
6	2225	Squire Pope Road	36.2	0.2	41.9	8.2	4.0	22.0	36.2
7	19543	Buckingham Plantation Drive	255.8	0.0	52.1	15.4	6.6	16.4	180.8
Total	$\mathbf{3 0 , 7 2 9}$		$\mathbf{5 0 9 . 2}$	$\mathbf{1 . 6}$	$\mathbf{4 1 . 1}$	$\mathbf{1 2 8 . 0}$	$\mathbf{1 1 9 . 6}$	$\mathbf{2 2 2 . 4}$	$\mathbf{4 3 0 . 8}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Study Name: Cross Island Parkway NB AM
Study Date : 3/27/2023
Page No. : 1

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
Cross Island AM-NB-R001	$03 / 27 / 23$	$07: 08$	31154	Before	Primary
Cross Island AM-NB-R002	$03 / 27 / 23$	$07: 13$	30926	Before	Primary
Cross Island AM-NB-R003	$03 / 27 / 23$	$07: 28$	27993	Before	Primary
Cross Island AM-NB-R004	$03 / 27 / 23$	$07: 36$	31013	Before	Primary
Cross Island AM-NB-R005	$03 / 27 / 23$	$07: 51$	30968	Before	Primary

Node Info

$\#$ Len Name 1 0 College Center Drive 2 1085 Roundabout 3 984 Target Road 4 4831 Arrow Road 5 24206 Wild Horse Road
Length of Study Route $=31,106$ feet

Notes:

NB AM

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Overall Output Statistics

Study Name: Cross Island Parkway NB AM
Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time $<=$ $\mathbf{4 5} \mathbf{M P H}$	Time $<=$ $\mathbf{5 0} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	College Center Drive							
2	1085	Roundabout	42.8	0.8	17.3	29.0	42.8	42.8	42.8
3	984	Target Road	20.6	0.0	32.6	8.2	20.6	20.6	20.6
4	4831	Arrow Road	71.6	0.0	46.0	11.6	24.2	69.4	71.6
5	24206	Wild Horse Road	277.8	0.0	59.4	0.8	7.6	32.0	63.2
Total	$\mathbf{3 1 , 1 0 6}$		$\mathbf{4 1 2 . 8}$	$\mathbf{0 . 8}$	$\mathbf{5 1 . 4}$	$\mathbf{4 9 . 6}$	$\mathbf{9 5 . 2}$	$\mathbf{1 6 4 . 8}$	$\mathbf{1 9 8 . 2}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Study Name : Cross Island Parkway SB AM Study Date : 3/27/2023
Page No. : 1

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
Cross Island AM-SB-R001	$03 / 27 / 23$	$07: 19$	31020	Before	Primary
Cross Island AM-SB-R002	$03 / 27 / 23$	$07: 25$	31019	Before	Primary
Cross Island AM-SB-R003	$03 / 27 / 23$	$07: 39$	30954	Before	Primary
Cross Island AM-SB-R004	$03 / 27 / 23$	$07: 46$	33259	Before	Primary
Cross Island AM-SB-R005	$03 / 27 / 23$	$08: 03$	30948	Before	Primary

Node Info

$\#$	Len	Name
1	0	Wild Horse Road
2	24206	Arrow Road
3	4831	Target Road
4	984	Roundabout
5	1085	College Center Drive

Length of Study Route $=31,106$ feet

Notes:

SB AM

CBB

US 278 Corridor Independent Review

Overall Output Statistics

Study Name : Cross Island Parkway SB AM Study Date: 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time <= $\mathbf{4 5} \mathbf{~ M P H ~}$	Time <= $\mathbf{5 0} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	Wild Horse Road							
2	24206	Arrow Road	304.8	0.2	54.1	9.6	30.6	63.8	128.0
3	4831	Target Road	82.8	0.4	39.8	22.8	61.0	73.2	80.8
4	984	Roundabout	49.4	1.2	13.6	37.2	49.4	49.4	49.4
5	1085	College Center Drive	31.8	0.6	23.3	19.0	31.0	31.0	31.0
Total	$\mathbf{3 1 , 1 0 6}$		$\mathbf{4 6 8 . 8}$	$\mathbf{2 . 4}$	$\mathbf{4 5 . 2}$	$\mathbf{8 8 . 6}$	$\mathbf{1 7 2 . 0}$	$\mathbf{2 1 7 . 4}$	$\mathbf{2 8 9 . 2}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 278 PM-EB-001	$03 / 27 / 23$	$14: 33$	30667	Before	Primary
US 278 PM-EB-002	$03 / 27 / 23$	$15: 29$	30809	Before	Primary
US 278 PM-EB-003	$03 / 27 / 23$	$16: 12$	30653	Before	Primary
US 278 PM-EB-004	$03 / 27 / 23$	$16: 25$	30752	Before	Primary
US 278 PM-EB-005	$03 / 27 / 23$	$16: 59$	30625	Before	Primary

Study Name : US 278 EB PM
Study Date : 3/27/2023
Page No. : 1
Node Info

$\#$	Len	Name
1	0	Buckingham Plantation
2	19543	Squire Pope Road
3	2225	Wild Horse Road
4	3051	Gumtree Road
5	1573	Wilborn Road
6	1237	Museum Street
7	3100	Indigo Run Drive

Notes:

PM EB

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Overall Output Statistics

Study Name : US 278 EB PM
Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time $<=$ $\mathbf{3 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{4 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	Buckingham Plantation Drive							
2	19543	Squire Pope Road	276.2	0.0	48.2	35.4	23.0	75.6	217.0
3	2225	Wild Horse Road	52.2	0.4	29.1	24.2	21.6	45.8	52.2
4	3051	Gumtree Road	80.6	0.8	25.8	42.6	43.2	60.6	80.6
5	1573	Wilborn Road	33.2	0.2	32.3	13.2	21.0	31.4	33.2
6	1237	Museum Street	47.8	0.6	17.6	32.2	33.4	43.2	47.8
7	3100	Indigo Run Drive	56.6	0.2	37.3	18.8	18.2	44.2	55.8
Total	$\mathbf{3 0 , 7 2 9}$		$\mathbf{5 4 6 . 6}$	$\mathbf{2 . 2}$	$\mathbf{3 8 . 3}$	$\mathbf{1 6 6 . 4}$	$\mathbf{1 6 0 . 4}$	$\mathbf{3 0 0 . 8}$	$\mathbf{4 8 6 . 6}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type
US 278 PM-WB-001	$03 / 27 / 23$	$14: 47$	30118	Before	Primary
US 278 PM-WB-002	$03 / 27 / 23$	$14: 55$	30158	Before	Primary
US 278 PM-WB-003	$03 / 27 / 23$	$15: 32$	30111	Before	Primary
US 278 PM-WB-004	$03 / 27 / 23$	$15: 44$	30105	Before	Primary
US 278 PM-WB-005	$03 / 27 / 23$	$16: 40$	30368	Before	Primary

Study Name : US 278 WB PM Study Date : 3/27/2023
Page No. : 1
Node Info

$\#$	Len	Name
1	0	Indigo Run Drive
2	3100	Museum Street
3	1237	Wilborn Road
4	1573	Gumtree Road
5	3051	Wild Horse Road
6	2225	Squire Pope Road
7	19543	Buckingham Plantation

Length of Study Route $=30,729$ feet

Notes:

PM WB

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Overall Output Statistics

Study Name : US 278 WB PM
Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time $<=$ $\mathbf{3 5} \mathbf{~ M P H ~}$	Time <= $\mathbf{4 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
$\mathbf{1}$	0	Indigo Run Drive							
2	3100	Museum Street	455.6	11.4	4.6	417.0	455.6	455.6	455.6
3	1237	Wilborn Road	86.2	1.6	9.8	70.8	86.2	86.2	86.2
4	1573	Gumtree Road	152.4	2.6	7.0	132.4	150.0	152.4	152.4
5	3051	Wild Horse Road	445.6	9.2	4.7	407.6	444.4	445.6	445.6
6	2225	Squire Pope Road	164.6	2.6	9.2	136.6	164.2	164.6	164.6
7	19543	Buckingham Plantation Drive	445.8	1.8	29.9	211.0	296.0	394.2	439.2
Total	$\mathbf{3 0 , 7 2 9}$		$\mathbf{1 7 5 0 . 2}$	$\mathbf{2 9 . 2}$	$\mathbf{1 2 . 0}$	$\mathbf{1 3 7 5 . 4}$	$\mathbf{1 5 9 6 . 4}$	$\mathbf{1 6 9 8 . 6}$	$\mathbf{1 7 4 3 . 6}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type	\#	Len	Name
Cross Island PM-NB-001	03/29/23	14:18	30203	Before	Primary	1	0	
						2	984	Target Road
Cross Island PM-NB-002	03/29/23	14:43	30035	Before	Primary	3	4831	Arrow Road
						4	24206	Wild Horse Road
Cross Island PM-NB-003	03/29/23	15:18	32016	Before	Primary	Length of Study Route $=30,021$ feet		
Cross Island PM-NB-004	03/29/23	16:03	31876	Before	Primary			
Cross Island PM-NB-005	03/27/23	14:28	32720	Before	Primary			

Notes:

PM NB

CBB

US 278 Corridor Independent Review

CBB\# \#2023-20

Overall Output Statistics

Study Name : Cross Island Parkway PM NB Study Date : 3/29/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time <= $\mathbf{3 5} \mathbf{M P H}$	Time <= $\mathbf{4 5} \mathbf{M P H}$	Time <= $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	Roundabout							
2	984	Target Road	55.6	0.8	12.1	43.2	55.6	55.6	55.6
3	4831	Arrow Road	82.6	0.2	39.9	22.4	15.4	61.8	82.6
4	24206	Wild Horse Road	914.6	14.8	18.0	614.6	657.8	671.8	$\mathbf{7 7 2 . 0}$
Total	$\mathbf{3 0 , 0 2 1}$		$\mathbf{1 0 5 2 . 8}$	$\mathbf{1 5 . 8}$	$\mathbf{1 9 . 4}$	$\mathbf{6 8 0 . 2}$	$\mathbf{7 2 8 . 8}$	$\mathbf{7 8 9 . 2}$	$\mathbf{9 1 0 . 2}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

CBB

US 278 Corridor Independent Review
CBB \#2023-20

Study Summary

Runs Used in This Study

Run Title	Start Date	Start Time	Length	Before/ After	Run Type	\#	Len	Name
Cross Island PM-SB-01	03/27/23	14:14	32127	Before	Primary	1	0	
						2	24206	Arrow Road
Cross Island PM-SB-02	03/29/23	15:02	32224	Before	Primary	3	4831	Target Road
						4	984	Roundabout
Cross Island PM-SB-03	03/29/23	15:02	32224	Before	Primary	Length of Study Route $=30,021$ feet		
Cross Island PM-SB-04	03/29/23	15:47	32112	Before	Primary			
Cross Island PM-SB-05	03/27/23	16:07	31841	Before	Primary			

Notes:

SB PM

CBB

US 278 Corridor Independent Review

Overall Output Statistics

Study Name : Cross Island Parkway PM SB Study Date : 3/27/2023
Page No. : 2

Node $\#$	Length	Node	Travel Time	\# of Stops	Avg Speed	Total Delay	Time $<=$ $\mathbf{3 5} \mathbf{~ M P H}$	Time $<=$ $\mathbf{4 5} \mathbf{~ M P H ~}$	Time $<=$ $\mathbf{5 5} \mathbf{~ M P H ~}$
1	0	Wild Horse Road							
2	24206	Arrow Road	340.8	0.8	48.4	39.8	56.6	80.4	182.0
3	4831	Target Road	104.8	1.2	31.4	44.8	40.2	83.4	104.8
4	984	Roundabout	15.8	0.0	42.5	3.6	0.0	15.2	15.8
Total	$\mathbf{3 0 , 0 2 1}$		$\mathbf{4 6 1 . 4}$	$\mathbf{2 . 0}$	$\mathbf{4 4 . 4}$	$\mathbf{8 8 . 2}$	$\mathbf{9 6 . 8}$	$\mathbf{1 7 9 . 0}$	$\mathbf{3 0 2 . 6}$

Stats based on 5 BEFORE runs.
Stops based on a Stop Speed of 5 MPH.
Total Delay based on a Normal Speed of 55 MPH.

Appendix B- SYNCHRO and VISSIM Measure of Effectiveness
 Tables

DRAFT

Table 1: Intersection Operating Conditions - 2023 No-Build (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)								
Eastbound Bluffton Parkway	A	4.4	<25'	175'	A	3.2	<25'	125'
Westbound Bluffton Parkway	A	5.6	<25'	225'	A	4.2	<25'	205'
Northbound Buckingham Plantation Drive	D	54.6	<25'	135'	D	48.1	<25'	125'
Southbound Buckingham Plantation Drive	B	18.3	<25'	$120 '$	C	26.2	<25'	200'
Overall Intersection	A	7.0	---	---	A	7.2	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)								
Eastbound US 278	D	54.6	305'	1515'	B	15.4	60'	385'
Westbound US 278	B	14.0	30^{\prime}	$370{ }^{\prime}$	B	20.0	120^{\prime}	745^{\prime}
Northbound Buckingham Plantation Drive	D	44.3	35'	245'	D	49.9	25^{\prime}	120'
Southbound Moss Creek Drive	D	38.7	<25'	145'	C	32.9	30'	220'
Overall Intersection	D	40.6	---	---	B	19.6	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)								
Eastbound US 278	D	34.9	400'	1185'	A	0.8	<25'	$120{ }^{\prime}$
Westbound US 278	A	0.4	<25'	70^{\prime}	A	0.5	<25'	50^{\prime}
Northbound Salt Marsh Drive	C	20.1	<25'	75^{\prime}	B	13.3	<25'	60^{\prime}
Southbound Moss Creek Village	B	11.6	<25'	85'	A	9.7	<25'	85'
Overall Intersection	C	23.0	---	---	A	0.9	--	---
US 278 \& Fording Island Road Extension (Unsignalized)								
Eastbound US 278	C	17.9	405'	1040'	A	0.1	<25'	90^{\prime}
Westbound US 278	A	0.4	<25'	30'	A	0.4	<25'	30'
Northbound Fording Island Road Extension	F	522.5	75^{\prime}	225'	C	18.5	<25'	70^{\prime}
Overall Intersection	C	16.2	---	---	A	0.4	---	---
US 278 \& Pinckney Wildlife Refuge (Unsignalized)								
Eastbound US 278	A	8.5	490'	1670'	A	1.0	<25'	80^{\prime}
Westbound US 278	A	0.5	<25'	65^{\prime}	A	0.5	<25'	60^{\prime}
Northbound Pinckney Wildlife Refuge	F	110.2	<25'	55'	C	24.9	<25'	50^{\prime}
Southbound Pinckney Wildlife Refuge	D	25.8	<25'	50^{\prime}	B	14.8	<25'	55^{\prime}
Overall Intersection	A	6.2	---	---	A	0.8	--	---
US 278 \& Blue Heron Point Road (Unsignalized)								
Eastbound US 278	A	9.5	635'	1675'	A	0.4	<25'	<25'
Westbound US 278	A	0.7	<25'	35^{\prime}	A	0.5	<25'	<25'
Northbound Blue Heron Point Road	F	187.6	<25'	80'	C	18.2	<25'	65^{\prime}
Overall Intersection	A	7.2	---	---	A	0.5	---	---
US 278 \& Crosstree Drive/Gateway Drive (Unsignalized)								
Eastbound US 278	B	13.2	275'	1060'	A	0.7	<25'	<25'
Westbound US 278	A	2.3	<25'	105'	A	1.1	<25'	70^{\prime}
Northbound Crosstree Drive	E	46.8	<25'	105'	C	18.6	<25'	95^{\prime}
Southbound Gateway Drive	B	11.1	<25'	40'	C	16.5	<25'	40'
Overall Intersection	B	10.2	---	---	A	1.2	---	---

DRAFT

Table 1: Intersection Operating Conditions - 2023 No-Build (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 \& Jenkins Road (Unsignalized)								
Eastbound US 278	B	12.7	430'	1365'	A	1.0	<25'	60'
Westbound US 278	A	0.8	<25'	70^{\prime}	A	0.8	<25'	<25'
Southbound Jenkins Road	F	132.7	<25'	$50 '$	D	31.7	<25'	60^{\prime}
Overall Intersection	A	9.2	---	---	A	0.9	---	---
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)								
Eastbound US 278	A	8.4	600'	1685'	B	15.8	200'	1195'
Westbound US 278	A	6.4	<25'	$640{ }^{\prime}$	B	18.5	$1540 '$	1705'
Northbound Chamberlin Drive	C	33.1	<25'	45'	E	73.1	<25'	70'
Southbound Squire Pope Road	B	15.9	<25'	150'	E	69.2	75^{\prime}	$525{ }^{\prime}$
Overall Intersection	A	8.3	---	---	C	21.4	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)								
Eastbound US 278	C	24.9	385'	1375'	C	21.4	110'	695'
Westbound US 278	B	13.3	55^{\prime}	435'	F	83.3	1490'	1690'
Northbound Spanish Wells Road	D	44.4	80'	335'	F	222.6	550'	$720{ }^{\prime}$
Southbound Wild Horse Road	E	75.4	80'	295'	E	65.1	55^{\prime}	225'
Overall Intersection	C	25.0	---	---	E	66.7	---	---
US 278 \& Gumtree Road (Signalized)								
Eastbound Business US 278	F	84.0	1475'	1690'	D	48.6	170'	735'
Westbound Business US 278	C	28.8	115'	385'	F	128.6	1275'	1610'
Northbound Gumtree Road	C	23.1	60^{\prime}	260'	E	79.6	420'	595'
Southbound Gumtree Road	E	66.9	150'	$630{ }^{\prime}$	F	120.1	$420{ }^{\prime}$	895'
Overall Intersection	E	60.6	---	---	F	98.8	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)								
Eastbound Business US 278	B	17.8	190'	1115'	B	15.2	65'	905'
Westbound Business US 278	B	18.7	70^{\prime}	550	F	114.9	960'	1305'
Northbound Jarvis Park Road	E	69.1	35^{\prime}	205'	F	314.5	155'	355'
Southbound Wilborn Road	D	47.5	80'	470'	D	52.1	35'	275'
Overall Intersection	C	22.3	---	---	E	71.2	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)								
Eastbound Business US 278	B	14.1	160'	1135'	B	19.5	$100 '$	865'
Westbound Business US 278	B	11.0	30^{\prime}	385'	F	167.8	1485'	1685'
Northbound Pembroke Drive	D	54.2	60'	$235{ }^{\prime}$	F	306.4	480'	800'
Southbound Museum Street	C	32.8	<25'	85'	F	144.7	35^{\prime}	175'
Overall Intersection	B	17.0	---	---	F	116.9	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)								
Eastbound Business US 278	C	24.2	205'	1105'	C	31.9	110'	775'
Westbound Business US 278	B	15.5	45^{\prime}	335'	F	214.0	1450'	1690'
Northbound Indigo Run Drive	D	47.4	30^{\prime}	$105{ }^{\prime}$	E	74.5	45^{\prime}	135'
Southbound Whooping Crane Way	D	41.5	50^{\prime}	185'	E	70.2	80'	305'
Overall Intersection	C	24.6	---	---	F	116.1	--	---

DRAFT

Table 1: Intersection Operating Conditions - 2023 No-Build (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)								
Westbound US 278 Off-Ramp	A	3.0	<25'	65^{\prime}	F	176.3	560'	1455'
Northbound Gumtree Road	A	9.7	<25'	70'	F	60.3	<25'	100'
Southbound Gumtree Road	A	0.2	<25'	<25'	A	0.2	<25'	<25'
Overall Intersection	A	1.7	---	---	F	109.1	---	---
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)								
Eastbound Honey Horn Drive	A	7.4	<25'	55'	A	8.3	<25'	80'
Southbound Gumtree Road	A	0.1	<25'	<25'	A	0.2	<25'	<25'
Overall Intersection	A	0.3	---	---	A	1.2	---	---
Marshland Road \& Spanish Wells Road (Unsignalized)								
Eastbound Marshland Road	A	0.5	<25'	40'	A	0.8	<25'	50'
Westbound Marshland Road	A	0.4	<25'	<25'	A	0.9	<25'	55'
Southbound Spanish Wells Road	A	8.4	<25'	$100{ }^{\prime}$	A	7.8	<25'	95^{\prime}
Overall Intersection	A	2.6	---	---	A	2.1	---	---
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.3	<25'	<25'	A	0.3	<25'	<25'
Westbound Marshland Road	A	0.5	<25'	50'	A	0.5	<25'	35'
Southbound Cross Island Parkway Off-Ramp	A	6.9	<25'	$100{ }^{\prime}$	A	8.5	<25'	$110{ }^{\prime}$
Overall Intersection	A	0.9	---	---	A	1.5	---	---
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.7	<25'	40'	A	0.7	<25'	35'
Westbound Marshland Road	A	0.6	<25'	40'	A	0.5	<25'	<25'
Northbound Cross Island Parkway Off-Ramp	A	7.2	<25'	$100{ }^{\prime}$	A	10.0	25^{\prime}	185'
Overall Intersection	A	1.9	---	---	A	4.5	---	---
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)								
Eastbound Point Comfort Road	D	46.2	55'	240'	D	45.1	40'	200'
Westbound Arrow Road	C	20.4	<25'	85'	C	22.9	35^{\prime}	205'
Northbound Palmetto Bay Road	A	5.8	<25'	230'	A	5.5	<25'	335'
Southbound Palmetto Bay Road	A	7.6	40'	$675{ }^{\prime}$	A	6.6	<25'	405'
Overall Intersection	B	11.1	---	---	B	10.6	---	---
Target Road \& Palmetto Bay Road (Signalized)								
Eastbound Target Road	D	45.7	<25'	145'	D	53.2	70^{\prime}	230'
Westbound Target Road	D	50.0	40'	125'	C	33.0	30'	$120{ }^{\prime}$
Northbound Palmetto Bay Road	A	6.1	<25'	250'	A	9.2	45^{\prime}	425'
Southbound Palmetto Bay Road	B	16.1	295'	1335'	A	7.1	40'	$550{ }^{\prime}$
Overall Intersection	B	16.7	---	---	B	14.7	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout)								
Eastbound Greenwood Drive	F	146.6	585'	1240'	E	43.4	305'	995'
Westbound Business US 278	C	16.5	60'	500'	F	199.8	$1310{ }^{\prime}$	1695'
Northbound Pope Avenue	A	6.8	<25'	$320{ }^{\prime}$	D	34.9	310'	930'
Southbound Palmetto Bay Road	C	24.5	330'	920'	B	11.1	65^{\prime}	670'
Overall Intersection	D	34.7	---	---	F	56.8	---	---

DRAFT

Table 2: Intersection Operating Conditions - 2023 No-Build (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)										
Eastbound Bluffton Parkway	A	2.8	0.37	90'	125'	A	2.5	0.21	50'	80'
Westbound Bluffton Parkway	A	6.0	0.18	65^{\prime}	100'	A	6.9	0.38	165'	235'
Northbound Buckingham Plantation Drive	E	61.9	0.36	30^{\prime}	65^{\prime}	E	70.1	0.59	30'	65^{\prime}
Southbound Buckingham Plantation Drive	C	31.1	0.46	<25	60^{\prime}	C	29.9	0.64	<25	90'
Overall Intersection	A	6.7	0.64	---	---	A	9.0	0.69	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)										
Eastbound US 278	B	15.5	0.54	370'	430'	B	17.9	0.65	$330{ }^{\prime}$	405'
Westbound US 278	B	15.4	0.36	215'	280'	C	25.5	0.73	605'	765'
Northbound Buckingham Plantation Drive	D	41.5	0.59	70'	125'	D	54.5	0.36	50^{\prime}	90'
Southbound Moss Creek Drive	D	47.9	0.52	40'	105'	E	57.7	0.77	85'	195'
Overall Intersection	B	18.6	0.63	---	---	C	24.9	0.81	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)										
Eastbound US 278	A	<1.0	0.47	--	<25'	A	<1.0	0.40	--	<25'
Westbound US 278	A	<1.0	0.27	--	<25'	A	<1.0	0.52	--	<25'
Northbound Salt Marsh Drive	B	14.4	0.13	--	<25'	D	30.9	0.11	--	<25'
Southbound Moss Creek Village	B	13.7	0.14	--	<25'	D	26.2	0.24	--	25^{\prime}
Overall Intersection	A	0.6	0.50	--	--	A	0.9	0.58	--	--
US 278 \& Fording Island Road Extension (Unsignalized)										
Eastbound US 278	A	<1.0	0.60	--	<25'	A	<1.0	0.50	--	<25'
Westbound US 278	A	<1.0	0.36	--	<25'	A	<1.0	0.67	--	<25'
Northbound Fording Island Road Extension	F	>200	0.94	--	80'	F	>200	1.78	--	100'
Overall Intersection	A	2.9	0.62	--	--	A	6.0	0.68	--	--
US 278 \& Pinckney Wildlife Refuge (Unsignalized)										
Eastbound US 278	A	<1.0	0.91	--	<25'	A	1.6	0.68	--	<25'
Westbound US 278	A	<1.0	0.51	--	<25'	A	<1.0	0.98	--	<25'
Northbound Pinckney Wildlife Refuge	F	>200	0.60	--	40'	F	>200	--	--	--
Southbound Pinckney Wildlife Refuge	F	80.9	0.19	--	<25'	F	>200	1.00	--	65'
Overall Intersection	A	1.0	0.89	--	--	C	21.4	0.95	--	--
US 278 \& Blue Heron Point Road (Unsignalized)										
Eastbound US 278	A	<1.0	0.91	--	<25'	A	<1.0	0.68	--	<25'
Westbound US 278	A	<1.0	0.51	--	<25'	A	<1.0	0.98	--	<25'
Northbound Blue Heron Point Road	F	>200	2.57	--	80'	F	>200	1.00	--	80'
Overall Intersection	A	6.1	0.89	--	--	A	5.1	0.95	--	--
US 278 \& Crosstree Drive/Gateway Drive (Unsignalized)										
Eastbound US 278	A	<1.0	0.90	--	<25'	A	<1.0	0.68	--	<25'
Westbound US 278	A	<1.0	0.50	--	<25'	A	<1.0	0.97	--	<25'
Northbound Crosstree Drive	F	>200	--	--	--	F	>200	--	--	--
Southbound Gateway Drive	C	17.1	0.02	--	<25'	E	48.5	0.06	--	<25'
Overall Intersection	F	120.3	0.88	--	--	F	159.3	1.01	--	--

DRAFT

Table 2: Intersection Operating Conditions - 2023 No-Build (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 \& Jenkins Road (Unsignalized)										
Eastbound US 278	A	<1.0	0.92	--	<25'	A	<1.0	0.69	--	<25'
Westbound US 278	A	<1.0	0.68	--	<25'	A	<1.0	1.31	--	<25'
Southbound Jenkins Road	F	>200	0.80	--	45'	F	>200	--	--	--
Overall Intersection	A	1.2	0.89	--	--	D	28.1	0.95	--	--
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)										
Eastbound US 278	C	26.9	0.99	1005'	1835'	B	17.9	1.07	$310{ }^{\prime}$	565'
Westbound US 278	B	12.2	0.56	180'	425'	F	85.9	1.13	2030'	2120'
Northbound Chamberlin Drive	D	49.8	0.05	<25	<25	E	76.9	0.30	30'	70'
Southbound Squire Pope Road	D	45.2	0.82	45'	140'	F	466.9	2.04	530'	745'
Overall Intersection	C	23.3	1.01	---	---	F	84.9	1.17	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)										
Eastbound US 278	B	19.1	0.93	850'	805'	C	24.4	0.70	630'	465'
Westbound US 278	B	16.1	0.59	170'	235'	D	38.9	0.71	890'	$790{ }^{\prime}$
Northbound Spanish Wells Road	D	51.8	0.61	120'	195'	F	102.4	1.04	325'	520'
Southbound Wild Horse Road	F	98.2	0.96	135'	275'	D	53.9	0.29	95'	160'
Overall Intersection	C	23.7	0.95	---	---	D	38.2	0.73	---	---
US 278 \& Gumtree Road (Signalized)										
Eastbound Business US 278	E	67.8	1.02	985'	1120'	E	57.6	0.74	670'	735'
Westbound Business US 278	D	36.9	0.91	230'	355'	F	113.0	1.21	1125'	1225'
Northbound Gumtree Road	D	37.4	0.88	150'	285'	E	63.8	0.94	260'	435'
Southbound Gumtree Road	F	113.1	1.04	235'	420'	F	86.0	0.90	265'	425'
Overall Intersection	E	60.9	0.93	---	---	F	88.6	0.93	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)										
Eastbound Business US 278	C	20.2	0.80	665'	880'	C	20.2	0.79	470'	580'
Westbound Business US 278	B	12.9	0.52	225'	260'	C	24.4	0.95	390'	1535'
Northbound Jarvis Park Road	F	83.0	0.60	75'	135'	F	89.6	0.60	85'	145'
Southbound Wilborn Road	D	49.9	0.72	145'	215'	C	25.4	0.48	60^{\prime}	110'
Overall Intersection	C	22.5	0.98	---	---	C	24.1	0.88	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)										
Eastbound Business US 278	B	14.7	0.82	830'	790'	C	21.9	0.59	560'	660'
Westbound Business US 278	B	16.9	0.46	285'	$360{ }^{\prime}$	D	35.2	0.86	845'	1195'
Northbound Pembroke Drive	E	80.0	0.78	145'	255'	F	86.4	0.81	220'	310'
Southbound Museum Street	C	32.4	0.34	30'	70^{\prime}	D	41.8	0.43	45'	90^{\prime}
Overall Intersection	C	21.6	0.82	---	---	D	35.4	0.78	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)										
Eastbound Business US 278	A	6.3	0.74	60'	550'	C	35.0	0.86	$540{ }^{\prime}$	800'
Westbound Business US 278	B	17.3	0.44	245'	355'	D	38.8	0.91	900'	1235'
Northbound Indigo Run Drive	E	59.6	0.43	50'	100'	E	69.6	0.71	$130{ }^{\prime}$	205'
Southbound Whooping Crane Way	D	51.2	0.65	110'	155'	E	63.2	0.70	$150 '$	195'
Overall Intersection	B	17.8	0.76	---	---	D	42.1	0.84	---	---

DRAFT

Table 2: Intersection Operating Conditions - 2023 No-Build (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)										
Westbound US 278 Off-Ramp	F	>200	--	--	--	F	>200	--	--	--
Northbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.02	--	<25'
Southbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.12	--	<25'
Overall Intersection	F	>200	0.25	--	--	F	>200	0.33	--	--
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)										
Eastbound Honey Horn Drive	B	10.5	0.02	--	<25'	B	11.1	0.08	--	<25'
Southbound Gumtree Road	A	<1.0	0.24	--	$<25{ }^{\prime}$	A	<1.0	0.24	--	$<25 '$
Overall Intersection	A	0.3	0.29	--	--	A	1.3	0.30	--	--
Marshland Road \& Spanish Wells Road (Unsignalized)										
Eastbound Marshland Road	A	1.1	0.04	--	<25'	A	2.9	0.08	--	<25'
Westbound Marshland Road	A	<1.0	0.11	--	<25'	A	<1.0	0.30	--	<25'
Southbound Spanish Wells Road	B	13.0	0.28	--	30'	C	15.3	0.26	--	25'
Overall Intersection	A	4.0	0.30	--	--	A	3.5	0.46	--	--
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	<1.0	0.13	--	<25'	A	<1.0	0.08	--	<25'
Westbound Marshland Road	A	3.9	0.11	--	<25'	A	2.0	0.25	--	<25'
Southbound Cross Island Parkway Off-Ramp	B	11.3	0.06	--	<25'	C	16.5	0.23	--	25^{\prime}
Overall Intersection	A	2.1	0.33	--	--	A	3.5	0.36	--	--
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	4.2	0.10	--	<25'	A	2.0	0.09	--	<25'
Westbound Marshland Road	A	<1.0	0.08	--	<25'	A	<1.0	0.12	--	<25'
Northbound Cross Island Parkway Off-Ramp	B	12.3	0.16	--	<25'	C	15.6	0.50	--	75^{\prime}
Overall Intersection	A	4.1	0.33	--	--	A	7.1	0.36	--	--
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)										
Eastbound Point Comfort Road	E	57.8	0.86	115'	185'	E	69.0	0.99	70^{\prime}	180'
Westbound Arrow Road	C	22.7	0.40	30'	70^{\prime}	C	33.0	0.70	160'	285'
Northbound Palmetto Bay Road	D	30.6	0.81	--	270'	B	17.9	0.62	455'	575'
Southbound Palmetto Bay Road	B	18.2	0.62	--	670	B	18.8	0.63	335'	410'
Overall Intersection	B	19.0	0.79	--	---	C	23.0	0.88	---	---
Target Road \& Palmetto Bay Road (Signalized)										
Eastbound Target Road	D	42.2	0.33	45'	85'	E	62.5	0.79	170'	245'
Westbound Target Road	E	59.9	0.68	95'	155'	D	35.4	0.44	75^{\prime}	120^{\prime}
Northbound Palmetto Bay Road	A	7.9	0.30	125'	190'	B	13.5	0.53	$315{ }^{\prime}$	465'
Southbound Palmetto Bay Road	A	6.7	0.52	145'	175'	A	7.7	0.51	115'	140'
Overall Intersection	B	12.4	0.66	---	---	B	17.4	0.68	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout)										
Eastbound Greenwood Drive	D	30.6	0.81	--	185'	E	39.4	0.95	--	420'
Westbound Business US 278	B	12.1	0.63	--	130'	D	31.5	0.95	--	365'
Northbound Pope Avenue	A	6.5	0.53	--	95'	D	28.3	0.94	--	5301
Southbound Palmetto Bay Road	E	44.3	1.06	--	50'	D	26.3	0.95	--	680'
Overall Intersection	D	27.3	---	---	---	D	30.4	---	---	---

DRAFT

Table 3: Intersection Operating Conditions - 2023 SCDOT (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)								
Eastbound Bluffton Parkway	A	3.1	<25'	175'	A	3.3	<25'	125'
Westbound Bluffton Parkway	A	6.0	<25'	225'	A	4.0	<25'	300'
Northbound Buckingham Plantation Drive	D	54.2	<25'	135'	D	48.1	<25'	125^{\prime}
Southbound Buckingham Plantation Drive	B	18.1	<25'	$120 '$	C	26.3	<25'	200'
Overall Intersection	A	6.2	---	---	A	6.8	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)								
Eastbound US 278	B	14.1	55^{\prime}	415'	B	15.0	45'	$365{ }^{\prime}$
Westbound US 278	B	13.9	30'	365'	C	23.8	$160{ }^{\prime}$	$980{ }^{\prime}$
Northbound Buckingham Plantation Drive	D	36.1	35'	$240{ }^{\prime}$	D	50.0	25^{\prime}	120'
Southbound Moss Creek Drive	C	33.5	<25'	135'	C	33.7	30'	220
Overall Intersection	B	16.5	---	---	C	21.5	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)								
Eastbound US 278	A	0.2	<25'	45'	A	0.4	<25'	70'
Westbound US 278	A	0.3	<25'	95'	A	0.7	<25'	45'
Northbound Salt Marsh Drive	B	11.2	<25'	75^{\prime}	B	14.3	<25'	60'
Southbound Moss Creek Village	A	9.1	<25'	85'	B	12.0	<25'	95'
Overall Intersection	A	0.6	---	---	A	0.9	---	---
US 278 \& Fording Island Road Extension (Unsignalized)								
Eastbound US 278	A	0.1	<25'	<25'	A	0.2	<25'	70'
Westbound US 278	A	0.2	<25'	25^{\prime}	A	0.3	$<25{ }^{\prime}$	30^{\prime}
Northbound Fording Island Road Extension	B	11.3	<25'	55'	C	15.2	<25'	60'
Overall Intersection	A	0.2	---	---	A	0.4	---	---
US 278 \& Pinckney Wildlife Refuge (Unsignalized)								
Eastbound US 278	A	0.3	$<25{ }^{\prime}$	30'	A	0.3	<25'	<25'
Westbound US 278	A	0.2	<25'	<25'	A	0.4	<25'	<25'
Northbound Pinckney Wildlife Refuge	A	0.6	<25'	<25'	A	0.6	<25'	<25'
Southbound Pinckney Wildlife Refuge	A	0.5	<25'	<25'	A	0.6	<25'	<25'
Overall Intersection	A	0.3	---	---	A	0.4	---	---
US 278 \& Crosstree Drive/Gateway Drive (Signalized)								
Eastbound US 278	A	5.4	55'	715'	A	7.1	40'	500'
Westbound US 278	A	4.2	<25'	395'	A	6.8	105'	905'
Northbound Crosstree Drive	D	38.2	<25'	70'	D	50.4	<25'	125'
Southbound Gateway Drive	D	42.6	<25'	$100{ }^{\prime}$	D	41.1	<25'	95'
Overall Intersection	A	5.6	---	---	A	7.7	---	---

DRAFT

Table 3: Intersection Operating Conditions - 2023 SCDOT (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)								
Eastbound US 278	E	56.0	1035'	1690'	B	17.5	100'	$570{ }^{\prime}$
Westbound US 278	A	7.4	<25'	70^{\prime}	B	15.1	65^{\prime}	$740{ }^{\prime}$
Northbound Chamberlin Drive	F	91.1	<25'	<25'	E	73.5	<25'	25^{\prime}
Southbound Squire Pope Road	B	19.1	<25'	105'	C	32.5	40^{\prime}	185'
Overall Intersection	D	40.3	---	---	B	17.6	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)								
Eastbound US 278	D	45.4	1390'	1690'	C	21.8	130'	$740{ }^{\prime}$
Westbound US 278	B	17.1	70^{\prime}	$450{ }^{\prime}$	B	14.9	$210{ }^{\prime}$	1290'
Northbound Spanish Wells Road	F	111.4	95'	265'	E	61.8	70^{\prime}	230'
Southbound Wild Horse Road	F	170.2	205'	595'	E	55.9	55^{\prime}	190'
Overall Intersection	D	46.6	---	---	C	22.0	---	---
US 278 \& Gumtree Road (Signalized)								
Eastbound Business US 278	F	95.3	1540'	1695'	D	43.0	150'	780
Westbound Business US 278	C	29.0	115'	400'	C	34.8	245'	820'
Northbound Gumtree Road	C	23.1	60'	255'	C	30.4	95'	$325{ }^{\prime}$
Southbound Gumtree Road	E	66.1	145'	$660{ }^{\prime}$	E	65.5	160'	$760{ }^{\prime}$
Overall Intersection	E	66.1	---	---	D	40.1	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)								
Eastbound Business US 278	B	18.1	185'	1105'	B	12.0	50'	765'
Westbound Business US 278	B	19.4	75^{\prime}	575'	B	18.8	$240{ }^{\prime}$	1235'
Northbound Jarvis Park Road	E	71.9	35'	195'	E	75.3	40^{\prime}	190'
Southbound Wilborn Road	D	45.6	75^{\prime}	440'	C	21.6	30^{\prime}	135'
Overall Intersection	C	22.5	---	---	B	17.5	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)								
Eastbound Business US 278	B	14.9	175'	1150'	B	14.7	75'	775'
Westbound Business US 278	B	12.2	35'	380'	C	24.9	180^{\prime}	1105'
Northbound Pembroke Drive	D	53.6	60^{\prime}	$240{ }^{\prime}$	E	59.7	80'	275'
Southbound Museum Street	C	32.5	<25'	85'	D	45.1	<25'	115'
Overall Intersection	B	17.8	---	---	C	25.1	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)								
Eastbound Business US 278	C	22.9	180'	1075'	C	22.0	85'	765'
Westbound Business US 278	B	15.3	45^{\prime}	$330{ }^{\prime}$	C	24.9	185'	$940{ }^{\prime}$
Northbound Indigo Run Drive	D	47.9	30'	$100{ }^{\prime}$	D	53.2	40'	135'
Southbound Whooping Crane Way	D	41.6	50^{\prime}	180'	D	52.2	70'	255'
Overall Intersection	C	23.9	---	--	C	28.6	---	---

DRAFT

Table 3: Intersection Operating Conditions - 2023 SCDOT (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)								
Westbound US 278 Off-Ramp	A	2.9	<25'	$50 '$	A	7.9	<25'	120'
Northbound Gumtree Road	B	10.2	<25'	70^{\prime}	B	10.1	<25'	$100 '$
Southbound Gumtree Road	A	0.2	<25'	<25'	A	0.2	<25'	<25'
Overall Intersection	A	1.6	---	---	A	4.5	---	---
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)								
Eastbound Honey Horn Drive	A	8.8	<25'	55'	A	8.7	<25'	85'
Southbound Gumtree Road	A	0.1	<25'	<25'	A	0.1	<25'	<25'
Overall Intersection	A	0.3	---	---	A	1.1	---	---
Marshland Road \& Spanish Wells Road (Unsignalized)								
Eastbound Marshland Road	A	0.5	<25'	25^{\prime}	A	0.8	<25'	45'
Westbound Marshland Road	A	0.4	<25'	<25'	A	0.9	<25'	60^{\prime}
Southbound Spanish Wells Road	A	8.4	<25'	$100{ }^{\prime}$	A	7.8	<25'	95'
Overall Intersection	A	2.6	---	---	A	2.1	---	---
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.3	<25'	<25'	A	0.3	<25'	<25'
Westbound Marshland Road	A	0.5	<25'	50^{\prime}	A	0.5	<25'	35^{\prime}
Southbound Cross Island Parkway Off-Ramp	A	6.9	<25'	$100{ }^{\prime}$	A	8.9	<25'	$120{ }^{\prime}$
Overall Intersection	A	0.9	---	---	A	1.6	---	---
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.7	<25'	45'	A	0.7	<25'	35'
Westbound Marshland Road	A	0.6	<25'	35^{\prime}	A	0.5	<25'	<25'
Northbound Cross Island Parkway Off-Ramp	A	7.1	<25'	95'	A	9.8	25^{\prime}	185'
Overall Intersection	A	1.9	---	---	A	4.4	---	---
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)								
Eastbound Point Comfort Road	D	45.8	55'	235'	D	45.2	40'	200'
Westbound Arrow Road	C	20.3	<25'	80'	C	22.9	35'	205'
Northbound Palmetto Bay Road	A	5.2	<25'	235'	A	5.4	<25'	$340{ }^{\prime}$
Southbound Palmetto Bay Road	A	6.7	35'	$520{ }^{\prime}$	A	6.8	<25'	410'
Overall Intersection	B	10.4	---	---	B	10.5	---	---
Target Road \& Palmetto Bay Road (Signalized)								
Eastbound Target Road	D	46.1	<25'	145'	D	53.2	70^{\prime}	$230{ }^{\prime}$
Westbound Target Road	D	52.5	40'	125^{\prime}	C	32.9	30^{\prime}	120^{\prime}
Northbound Palmetto Bay Road	A	6.4	<25'	240'	A	9.6	45^{\prime}	$420{ }^{\prime}$
Southbound Palmetto Bay Road	C	27.2	$630{ }^{\prime}$	1510'	A	8.8	60^{\prime}	$750{ }^{\prime}$
Overall Intersection	C	23.2	---	---	B	15.4	---	--
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout)								
Eastbound Greenwood Drive	F	129.0	545'	1160'	F	55.9	400'	1105'
Westbound Business US 278	C	20.8	80'	560'	F	192.2	1300'	1695'
Northbound Pope Avenue	A	7.1	<25'	290'	D	31.4	265'	860'
Southbound Palmetto Bay Road	D	30.6	415'	925'	C	15.3	$120 '$	$775{ }^{\prime}$
Overall Intersection	E	37.2	---	---	F	58.3	---	---

DRAFT

Table 4: Intersection Operating Conditions - 2023 SCDOT (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)										
Eastbound Bluffton Parkway	A	2.8	0.37	90'	125'	A	2.5	0.21	50'	80'
Westbound Bluffton Parkway	A	6.0	0.18	65^{\prime}	100'	A	6.9	0.38	165'	235'
Northbound Buckingham Plantation Drive	E	61.9	0.36	30'	65^{\prime}	E	70.1	0.59	30'	65^{\prime}
Southbound Buckingham Plantation Drive	C	31.1	0.46	<25	60'	C	29.9	0.64	<25	90'
Overall Intersection	A	6.7	0.64	---	---	A	9.0	0.69	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)										
Eastbound US 278	B	15.5	0.54	370'	430'	B	17.9	0.65	$330{ }^{\prime}$	405'
Westbound US 278	B	15.4	0.36	215'	280'	C	25.5	0.73	605'	765'
Northbound Buckingham Plantation Drive	D	41.5	0.59	70^{\prime}	125'	D	54.5	0.36	50'	90'
Southbound Moss Creek Drive	D	47.9	0.52	40'	105'	E	57.7	0.77	85'	195'
Overall Intersection	B	18.6	0.63	---	---	C	24.9	0.81	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)										
Eastbound US 278	A	<1.0	0.47	--	<25'	A	<1.0	0.40	--	<25'
Westbound US 278	A	<1.0	0.27	--	$<25^{\prime}$	A	<1.0	0.52	--	<25'
Northbound Salt Marsh Drive	B	14.4	0.13	--	<25'	D	30.9	0.11	--	<25'
Southbound Moss Creek Village	B	13.7	0.14	--	<25'	D	26.2	0.24	--	25'
Overall Intersection	A	0.6	0.50	--	--	A	0.9	0.58	--	--
US 278 \& Fording Island Road Extension (Unsignalized)										
Eastbound US 278	A	<1.0	0.60	--	<25'	A	<1.0	0.50	--	<25'
Westbound US 278	A	<1.0	0.36	--	<25'	A	<1.0	0.67	--	<25'
Northbound Fording Island Road Extension	F	>200	0.94	--	80'	F	>200	1.78	--	100'
Overall Intersection	A	2.9	0.62	--	--	A	6.0	0.68	--	--
US 278 \& Pinckney Wildlife Refuge (Unsignalized)										
Eastbound US 278	A	<1.0	0.61	--	<25'	A	<1.0	0.45	--	<25'
Westbound US 278	A	<1.0	0.34	--	<25'	A	<1.0	0.65	--	<25'
Northbound Pinckney Wildlife Refuge	C	21.5	0.05	--	<25'	C	15.9	0.03	--	<25'
Southbound Pinckney Wildlife Refuge	B	13.0	0.02	--	<25'	C	24.2	0.08	--	<25'
Overall Intersection	A	<1.0	0.65	--	--	A	<1.0	0.69	--	--
US 278 \& Crosstree Drive/Gateway Drive (Signalized)										
Eastbound US 278	A	7.8	0.71	485'	$590{ }^{\prime}$	A	7.7	0.54	325'	385'
Westbound US 278	A	2.3	0.39	25'	60'	A	3.7	0.76	65^{\prime}	75^{\prime}
Northbound Crosstree Drive	C	30.8	0.33	<25	40'	D	47.6	0.51	40^{\prime}	85'
Southbound Gateway Drive	D	40.6	0.27	<25	40'	D	36.1	0.22	<25	45'
Overall Intersection	A	6.3	0.72	---	---	A	6.2	0.77	---	---

DRAFT

Table 4: Intersection Operating Conditions - 2023 SCDOT (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)										
Eastbound US 278	A	8.9	0.70	$120{ }^{\prime}$	130^{\prime}	B	13.6	0.78	$130 '$	195'
Westbound US 278	A	4.3	0.41	65^{\prime}	75'	C	23.3	0.85	935'	1000'
Northbound Chamberlin Drive	E	57.3	0.09	<25	<25	F	83.3	0.39	30'	70'
Southbound Squire Pope Road	C	25.1	0.64	35'	70'	E	62.1	0.94	75'	185'
Overall Intersection	A	8.4	0.79	---	---	C	22.5	0.85	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)										
Eastbound US 278	B	19.2	0.85	460'	460'	B	19.9	0.63	345'	360'
Westbound US 278	B	16.2	0.59	240	$320{ }^{\prime}$	A	6.0	0.68	135'	125'
Northbound Spanish Wells Road	E	61.1	0.76	65^{\prime}	120'	E	75.1	0.80	155'	210'
Southbound Wild Horse Road	E	71.0	0.66	$120 '$	190'	E	63.5	0.60	90'	150'
Overall Intersection	C	23.2	0.84	---	---	B	18.0	0.66	---	---
US 278 \& Gumtree Road (Signalized)										
Eastbound Business US 278	D	53.8	1.04	1000'	1135'	E	62.1	0.80	680'	750'
Westbound Business US 278	D	40.7	0.90	215'	355'	E	72.7	1.11	1075'	1185'
Northbound Gumtree Road	D	36.5	0.87	150'	280'	D	48.6	0.92	245'	415'
Southbound Gumtree Road	F	109.3	1.03	230'	410'	F	85.4	0.89	265'	415'
Overall Intersection	D	54.8	0.93	---	---	E	68.7	0.92	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)										
Eastbound Business US 278	B	10.4	0.80	145'	150'	B	17.6	0.79	405'	525'
Westbound Business US 278	A	9.2	0.52	130^{\prime}	$350 '$	B	18.4	0.95	225'	1535'
Northbound Jarvis Park Road	F	83.0	0.60	75^{\prime}	135'	F	89.6	0.60	85'	145'
Southbound Wilborn Road	D	49.9	0.72	145'	215'	C	25.4	0.48	60'	110'
Overall Intersection	B	15.9	0.98	---	---	C	20.1	0.88	-	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)										
Eastbound Business US 278	B	15.7	0.82	400'	690'	C	29.7	0.59	6501	740
Westbound Business US 278	C	34.2	0.46	485'	550'	B	13.8	0.86	75'	1220'
Northbound Pembroke Drive	E	80.0	0.78	145'	255'	F	86.4	0.81	220'	$310{ }^{\prime}$
Southbound Museum Street	C	32.4	0.34	30'	70'	D	41.8	0.43	45'	90'
Overall Intersection	C	27.2	0.82	---	---	C	28.3	0.78	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)										
Eastbound Business US 278	A	3.3	0.74	25'	60'	D	48.0	0.86	$730{ }^{\prime}$	810'
Westbound Business US 278	B	17.3	0.44	245'	355'	D	38.8	0.91	900'	1235'
Northbound Indigo Run Drive	E	59.6	0.43	50'	$100{ }^{\prime}$	E	69.6	0.71	130'	205'
Southbound Whooping Crane Way	D	51.2	0.65	110^{\prime}	155'	E	63.2	0.70	150'	195'
Overall Intersection	B	16.2	0.76	---	---	D	46.5	0.84	---	---

DRAFT

Table 4: Intersection Operating Conditions - 2023 SCDOT (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \& \text { ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	Max V/C \& ICU	50th \% Queue	95th \% Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)										
Westbound US 278 Off-Ramp	F	>200	--	--	--	F	>200	--	--	--
Northbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.02	--	<25'
Southbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.12	--	<25'
Overall Intersection	F	>200	0.25	--	--	F	>200	0.25	--	--
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)										
Eastbound Honey Horn Drive	B	10.5	0.02	--	<25'	B	11.1	0.08	--	<25'
Southbound Gumtree Road	A	<1.0	0.24	--	<25'	A	<1.0	0.24	--	<25'
Overall Intersection	A	0.3	0.29	--	--	A	1.3	0.30	--	--
Marshland Road \& Spanish Wells Road (Unsignalized)										
Eastbound Marshland Road	A	1.1	0.04	--	<25'	A	2.9	0.08	--	<25'
Westbound Marshland Road	A	<1.0	0.11	--	<25'	A	<1.0	0.30	--	<25'
Southbound Spanish Wells Road	B	13.0	0.28	--	30'	C	15.3	0.26	--	25'
Overall Intersection	A	4.0	0.30	--	--	A	3.5	0.46	--	--
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	<1.0	0.13	--	<25'	A	<1.0	0.08	--	<25'
Westbound Marshland Road	A	3.9	0.11	--	<25'	A	2.0	0.25	--	<25'
Southbound Cross Island Parkway Off-Ramp	B	11.3	0.06	--	<25'	C	16.5	0.23	--	25'
Overall Intersection	A	2.1	0.33	--	--	A	3.5	0.36	--	--
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	4.2	0.10	--	<25'	A	2.0	0.09	--	<25'
Westbound Marshland Road	A	<1.0	0.08	--	<25'	A	<1.0	0.12	--	<25'
Northbound Cross Island Parkway Off-Ramp	B	12.3	0.16	--	<25'	C	15.6	0.50	--	75^{\prime}
Overall Intersection	A	4.1	0.33	--	--	A	7.1	0.36	--	--
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)										
Eastbound Point Comfort Road	E	57.8	0.86	115'	185'	E	69.0	0.99	70'	180'
Westbound Arrow Road	C	22.7	0.40	30'	70^{\prime}	C	33.0	0.70	$160{ }^{\prime}$	285'
Northbound Palmetto Bay Road	A	8.1	0.33	180'	270'	B	17.9	0.62	455'	575'
Southbound Palmetto Bay Road	B	11.1	0.62	315'	400'	B	18.8	0.63	335'	410'
Overall Intersection	B	14.8	0.79	---	---	C	23.0	0.88	---	---
Target Road \& Palmetto Bay Road (Signalized)										
Eastbound Target Road	D	42.2	0.33	45'	85'	E	62.5	0.79	170'	245'
Westbound Target Road	E	59.9	0.68	95'	155'	D	35.4	0.44	75^{\prime}	120'
Northbound Palmetto Bay Road	A	7.9	0.30	125'	190'	B	13.5	0.53	315'	465'
Southbound Palmetto Bay Road	A	8.9	0.52	170'	225'	A	7.7	0.51	115'	$140 '$
Overall Intersection	B	13.6	0.66	---	---	B	17.4	0.68	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Roundabout)										
Eastbound Greenwood Drive	D	30.6	0.81	--	185'	E	39.4	0.95	--	420'
Westbound Business US 278	B	12.1	0.63	--	130'	D	31.5	0.95	--	365'
Northbound Pope Avenue	A	6.5	0.53	--	95'	D	28.3	0.94	--	530'
Southbound Palmetto Bay Road	E	44.3	1.06	--	50'	D	26.3	0.95	--	680'
Overall Intersection	D	27.3	---	---	---	D	30.4	---	---	---

DRAFT

Table 5: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)								
Eastbound Bluffton Parkway	A	3.1	<25'	175'	A	3.3	<25'	125'
Westbound Bluffton Parkway	A	6.0	<25'	205'	A	4.2	<25'	300
Northbound Buckingham Plantation Drive	D	54.2	<25'	135'	D	48.1	<25'	125'
Southbound Buckingham Plantation Drive	B	18.2	<25'	$120 '$	C	26.2	<25'	200'
Overall Intersection	A	6.2	---	---	A	6.9	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)								
Eastbound US 278	B	14.0	55'	430'	B	15.2	50'	$370{ }^{\prime}$
Westbound US 278	B	13.4	30^{\prime}	345^{\prime}	C	23.4	$160{ }^{\prime}$	1005'
Northbound Buckingham Plantation Drive	D	36.0	35'	240'	D	50.0	25^{\prime}	120'
Southbound Moss Creek Drive	C	33.5	<25'	$135{ }^{\prime}$	C	33.6	30'	220'
Overall Intersection	B	16.2	---	---	C	21.4	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)								
Eastbound US 278	A	0.2	<25'	45'	A	0.4	<25'	70^{\prime}
Westbound US 278	A	0.3	<25'	75^{\prime}	A	0.7	<25'	100'
Northbound Salt Marsh Drive	B	11.1	<25'	75^{\prime}	B	12.5	<25'	60^{\prime}
Southbound Moss Creek Village	A	9.0	<25'	85'	B	11.2	<25'	85'
Overall Intersection	A	0.6	---	---	A	0.8	---	---
US 278 \& Fording Island Road Extension (Unsignalized)								
Eastbound US 278	A	0.1	<25'	<25'	A	0.2	<25'	75^{\prime}
Westbound US 278	A	0.2	<25'	<25'	A	0.4	<25'	40^{\prime}
Northbound Fording Island Road Extension	B	11.0	<25'	55'	B	14.9	<25'	60^{\prime}
Overall Intersection	A	0.2	---	---	A	0.4	---	---
US 278 \& Pinckney Wildlife Refuge (Unsignalized)								
Eastbound US 278	A	0.3	<25'	<25'	A	0.3	<25'	30^{\prime}
Westbound US 278	A	0.2	<25'	<25'	A	0.5	<25'	25^{\prime}
Northbound Pinckney Wildlife Refuge	A	0.6	<25'	<25'	A	0.6	<25'	<25'
Southbound Pinckney Wildlife Refuge	A	0.5	<25'	<25'	A	0.6	<25'	<25'
Overall Intersection	A	0.3	---	---	A	0.4	---	---
US 278 \& Crosstree Drive/Gateway Drive (Signalized)								
Eastbound US 278	A	4.7	30'	605'	A	6.7	35'	450'
Westbound US 278	A	4.2	<25'	390'	A	6.8	$100{ }^{\prime}$	1000'
Northbound Crosstree Drive	C	34.3	<25'	60'	D	50.3	<25'	145'
Southbound Gateway Drive	D	43.5	<25'	$100{ }^{\prime}$	D	43.1	<25'	95'
Overall Intersection	A	5.0	---	---	A	7.6	---	---

DRAFT

Table 5: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)								
Eastbound US 278	B	12.3	115'	1080'	B	18.2	105'	590'
Westbound US 278	A	7.3	<25'	85'	B	16.5	80'	805'
Northbound Chamberlin Drive	D	43.7	<25'	<25'	E	72.3	<25'	<25'
Southbound Squire Pope Road	B	17.8	<25'	105'	C	32.7	40'	190'
Overall Intersection	B	11.2	---	---	B	18.6	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)								
Eastbound US 278	B	17.4	270'	1630'	C	21.8	130'	730'
Westbound US 278	B	14.7	60^{\prime}	435'	B	15.9	220	1255'
Northbound Spanish Wells Road	D	44.5	40'	$140{ }^{\prime}$	E	60.4	70^{\prime}	225'
Southbound Wild Horse Road	E	63.9	55^{\prime}	275'	D	54.6	50'	190'
Overall Intersection	C	20.3	---	---	C	22.3	---	---
US 278 \& Gumtree Road (Signalized)								
Eastbound Business US 278	C	34.3	155'	705'	D	39.1	95'	490'
Westbound Business US 278	C	28.9	$120 '$	395'	C	34.5	260'	960'
Northbound Gumtree Road	C	25.0	75^{\prime}	$300{ }^{\prime}$	C	30.0	115'	370
Southbound Gumtree Road	E	67.1	$150 '$	$690{ }^{\prime}$	E	65.4	160'	$760{ }^{\prime}$
Overall Intersection	D	35.8	---	---	D	38.9	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)								
Eastbound Business US 278	C	23.7	220'	1305'	B	14.0	55'	775'
Westbound Business US 278	B	19.4	75^{\prime}	590'	B	18.7	220'	1170'
Northbound Jarvis Park Road	E	72.7	40'	200'	E	78.1	40'	195'
Southbound Wilborn Road	D	46.6	75^{\prime}	440'	C	22.0	30^{\prime}	130^{\prime}
Overall Intersection	C	25.8	---	---	B	18.3	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)								
Eastbound Business US 278	B	16.0	190'	1220'	B	14.9	75'	755'
Westbound Business US 278	B	12.2	35^{\prime}	415'	C	26.9	205'	1160'
Northbound Pembroke Drive	D	53.1	60^{\prime}	$250 '$	E	59.9	80'	270'
Southbound Museum Street	C	32.3	<25'	80'	D	45.5	<25'	115'
Overall Intersection	B	18.4	---	---	C	26.1	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)								
Eastbound Business US 278	C	21.6	165'	1075'	C	20.4	75'	620'
Westbound Business US 278	B	15.4	45'	$340{ }^{\prime}$	C	24.5	185'	950'
Northbound Indigo Run Drive	D	48.2	30'	105'	D	53.7	40'	130^{\prime}
Southbound Whooping Crane Way	D	42.1	50^{\prime}	180'	D	51.4	65^{\prime}	255'
Overall Intersection	C	23.3	---	---	C	27.9	---	---

DRAFT

Table 5: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)								
Westbound US 278 Off-Ramp	A	3.9	<25'	75^{\prime}	A	8.5	<25'	135'
Northbound Gumtree Road	A	9.8	<25'	70^{\prime}	B	10.1	<25'	95'
Southbound Gumtree Road	A	0.2	<25'	<25'	A	0.2	<25'	<25'
Overall Intersection	A	2.2	---	---	A	4.8	--	---
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)								
Eastbound Honey Horn Drive	A	8.7	<25'	55'	A	8.7	<25'	80'
Southbound Gumtree Road	A	0.1	<25'	<25'	A	0.1	<25'	<25'
Overall Intersection	A	0.3	---	---	A	1.1	---	---
Marshland Road \& Spanish Wells Road (Unsignalized)								
Eastbound Marshland Road	A	0.5	<25'	25^{\prime}	A	0.8	<25'	45'
Westbound Marshland Road	A	0.4	<25'	25^{\prime}	A	0.9	<25'	60^{\prime}
Southbound Spanish Wells Road	A	8.4	<25'	$100{ }^{\prime}$	A	8.0	<25'	95'
Overall Intersection	A	2.6	---	---	A	2.1	---	---
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.3	<25'	<25'	A	0.3	<25'	<25'
Westbound Marshland Road	A	0.5	<25'	50'	A	0.5	$<25^{\prime}$	35'
Southbound Cross Island Parkway Off-Ramp	A	6.9	<25'	$100{ }^{\prime}$	A	8.7	<25'	$115{ }^{\prime}$
Overall Intersection	A	0.9	---	---	A	1.6	---	---
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.7	<25'	45'	A	0.7	<25'	30'
Westbound Marshland Road	A	0.6	<25'	40'	A	0.5	<25'	25^{\prime}
Northbound Cross Island Parkway Off-Ramp	A	7.3	<25'	95'	B	10.2	25^{\prime}	180'
Overall Intersection	A	1.9	---	---	A	4.6	---	---
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)								
Eastbound Point Comfort Road	D	46.2	55'	240'	D	45.2	40'	200'
Westbound Arrow Road	C	20.3	<25'	85'	C	23.4	35^{\prime}	$210{ }^{\prime}$
Northbound Palmetto Bay Road	A	6.5	<25'	$300{ }^{\prime}$	A	5.5	<25'	$380{ }^{\prime}$
Southbound Palmetto Bay Road	A	7.1	40'	595'	A	6.8	<25'	4301
Overall Intersection	B	10.9	---	---	B	10.5	--	---
Target Road \& Palmetto Bay Road (Signalized)								
Eastbound Target Road	D	45.3	<25'	145'	D	53.8	75^{\prime}	235'
Westbound Target Road	D	47.8	35^{\prime}	125'	C	33.2	30'	120^{\prime}
Northbound Palmetto Bay Road	A	9.8	30'	275'	B	10.6	55^{\prime}	465'
Southbound Palmetto Bay Road	A	3.7	<25'	420'	A	8.6	40'	535'
Overall Intersection	B	10.5	---	---	B	15.6	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Signalized)								
Eastbound Greenwood Drive	D	54.8	80'	265'	D	44.1	100'	385'
Westbound Business US 278	D	47.0	165'	$610{ }^{\prime}$	D	39.8	$220{ }^{\prime}$	$775{ }^{\prime}$
Northbound Pope Avenue	B	12.0	<25'	180'	B	16.6	50'	355'
Southbound Palmetto Bay Road	A	8.9	25^{\prime}	$300{ }^{\prime}$	B	10.8	30^{\prime}	$320{ }^{\prime}$
Overall Intersection	C	23.8	---	---	C	25.2	---	---

DRAFT

Table 6: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (SYNCHRO)

	AM Peak Hour					PM Peak Hour				
Intersection/Approach	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)										
Eastbound Bluffton Parkway	A	2.8	0.37	90'	125'	A	2.5	0.21	50^{\prime}	80'
Westbound Bluffton Parkway	A	6.0	0.18	65^{\prime}	100'	A	6.9	0.38	165'	235'
Northbound Buckingham Plantation Drive	E	61.9	0.36	30^{\prime}	65^{\prime}	E	70.1	0.59	30'	65^{\prime}
Southbound Buckingham Plantation Drive	C	31.1	0.46	<25	60^{\prime}	C	29.9	0.64	<25	90'
Overall Intersection	A	6.7	0.64	---	---	A	9.0	0.69	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)										
Eastbound US 278	B	15.5	0.54	370'	430'	B	17.9	0.65	$330{ }^{\prime}$	405'
Westbound US 278	B	15.4	0.36	215'	280'	C	25.5	0.73	605'	765'
Northbound Buckingham Plantation Drive	D	41.5	0.59	70^{\prime}	125'	D	54.5	0.36	50'	90'
Southbound Moss Creek Drive	D	47.9	0.52	40'	105'	E	57.7	0.77	85'	195'
Overall Intersection	B	18.6	0.63	---	---	C	24.9	0.81	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)										
Eastbound US 278	A	<1.0	0.47		<25'	A	<1.0	0.40	--	<25'
Westbound US 278	A	<1.0	0.27	--	<25'	A	<1.0	0.52	--	<25'
Northbound Salt Marsh Drive	B	14.4	0.13	--	<25'	D	30.9	0.11	--	<25'
Southbound Moss Creek Village	B	13.7	0.14	--	$<25^{\prime}$	D	26.2	0.24	--	25^{\prime}
Overall Intersection	A	0.6	0.50	--	--	A	0.9	0.58	--	--
US 278 \& Fording Island Road Extension (Unsignalized)										
Eastbound US 278	A	<1.0	0.60	--	<25'	A	<1.0	0.50	--	<25'
Westbound US 278	A	<1.0	0.36	--	<25'	A	<1.0	0.67	--	<25'
Northbound Fording Island Road Extension	F	>200	0.94	--	80'	F	>200	1.78	--	100'
Overall Intersection	A	2.9	0.62	--	--	A	6.0	0.68	--	--
US 278 \& Pinckney Wildlife Refuge (Unsignalized)										
Eastbound US 278	A	<1.0	0.61	--	<25'	A	<1.0	0.45	--	<25'
Westbound US 278	A	<1.0	0.34	--	<25'	A	<1.0	0.65	--	<25'
Northbound Pinckney Wildlife Refuge	C	21.5	0.05	--	<25'	C	15.9	0.03	--	<25'
Southbound Pinckney Wildlife Refuge	B	13.0	0.02	--	<25'	C	24.2	0.08	--	<25'
Overall Intersection	A	<1.0	0.65	--	--	A	<1.0	0.69	--	--
US 278 \& Crosstree Drive/Gateway Drive (Signalized)										
Eastbound US 278	A	7.8	0.71	485'	590'	A	7.7	0.54	325'	385'
Westbound US 278	A	2.3	0.39	25'	60'	A	3.8	0.76	65^{\prime}	75^{\prime}
Northbound Crosstree Drive	C	30.8	0.33	<25	40^{\prime}	D	47.6	0.51	40^{\prime}	85'
Southbound Gateway Drive	D	40.6	0.27	<25	40'	D	36.1	0.22	<25	45'
Overall Intersection	A	6.4	0.72	---	---	A	6.3	0.77	---	---

DRAFT

Table 6: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)										
Eastbound US 278	A	9.0	0.70	155'	170'	B	13.8	0.78	$130 '$	195'
Westbound US 278	A	4.3	0.41	65^{\prime}	75^{\prime}	C	23.3	0.85	935'	1000'
Northbound Chamberlin Drive	E	57.3	0.09	<25	<25	F	83.3	0.39	30'	70^{\prime}
Southbound Squire Pope Road	C	25.1	0.64	35'	70'	E	62.1	0.94	75'	185'
Overall Intersection	A	8.5	0.79	---	---	C	22.6	0.85	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)										
Eastbound US 278	B	19.7	0.85	495'	460'	B	19.8	0.63	345'	360'
Westbound US 278	B	16.8	0.59	255'	$325{ }^{\prime}$	A	6.7	0.68	160'	135'
Northbound Spanish Wells Road	E	61.1	0.76	65^{\prime}	120'	E	75.1	0.80	155'	210'
Southbound Wild Horse Road	E	71.0	0.66	$120 '$	190'	E	63.5	0.60	90'	150'
Overall Intersection	C	23.6	0.84	---	---	B	18.3	0.66	---	---
US 278 \& Gumtree Road (Signalized)										
Eastbound Business US 278	C	23.3	0.79	370'	390'	D	53.1	0.58	475'	525'
Westbound Business US 278	D	41.9	0.90	215'	355'	D	50.7	1.05	1005'	1140'
Northbound Gumtree Road	D	36.5	0.87	150'	280'	D	48.6	0.92	245'	415'
Southbound Gumtree Road	F	109.3	1.03	230'	410'	F	85.4	0.89	265'	415'
Overall Intersection	D	40.9	0.80	---	---	E	55.2	0.90	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)										
Eastbound Business US 278	B	15.7	0.80	290'	265'	C	21.0	0.79	$370{ }^{\prime}$	465'
Westbound Business US 278	B	10.8	0.52	210'	170'	B	18.4	0.95	225'	1535'
Northbound Jarvis Park Road	F	83.0	0.60	75^{\prime}	135'	F	89.6	0.60	85'	145'
Southbound Wilborn Road	D	49.9	0.72	145'	215'	C	25.4	0.48	60'	110'
Overall Intersection	B	19.3	0.98	---	---	C	21.4	0.88	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)										
Eastbound Business US 278	B	10.8	0.82	260'	690'	C	30.5	0.59	645'	735'
Westbound Business US 278	C	31.0	0.46	$380{ }^{\prime}$	550'	B	13.8	0.86	75'	1220'
Northbound Pembroke Drive	E	80.0	0.78	145'	255'	F	86.4	0.81	220'	310'
Southbound Museum Street	C	32.4	0.34	30'	70^{\prime}	D	41.8	0.43	45'	90'
Overall Intersection	C	23.4	0.82	---	---	C	28.7	0.78	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)										
Eastbound Business US 278	A	8.6	0.74	130'	160'	D	47.9	0.86	$730{ }^{\prime}$	810'
Westbound Business US 278	B	17.3	0.44	245'	355'	D	38.8	0.91	900'	1235'
Northbound Indigo Run Drive	E	59.6	0.43	50'	$100{ }^{\prime}$	E	69.6	0.71	130'	205'
Southbound Whooping Crane Way	D	51.2	0.65	110'	155'	E	63.2	0.70	150'	195'
Overall Intersection	B	19.0	0.76	---	---	D	46.5	0.84	---	---

DRAFT

Table 6: Intersection Operating Conditions - 2023 Gumtree Road and Sea Pines Improvements (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)										
Westbound US 278 Off-Ramp	F	>200	--	--	--	F	>200	--	--	--
Northbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.02	--	<25'
Southbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.12	--	<25'
Overall Intersection	F	>200	0.25	--	--	F	>200	0.25	--	--
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)										
Eastbound Honey Horn Drive	B	10.5	0.02	--	<25'	B	11.1	0.08	--	<25'
Southbound Gumtree Road	A	<1.0	0.24	--	<25'	A	<1.0	0.24	--	<25'
Overall Intersection	A	0.3	0.29	--	--	A	1.3	0.30	--	--
Marshland Road \& Spanish Wells Road (Unsignalized)										
Eastbound Marshland Road	A	1.1	0.04	--	<25'	A	2.9	0.08	--	<25'
Westbound Marshland Road	A	<1.0	0.11	--	<25'	A	<1.0	0.30	--	<25'
Southbound Spanish Wells Road	B	13.0	0.28	--	30'	C	15.3	0.26	--	25'
Overall Intersection	A	4.0	0.30	--	--	A	3.5	0.46	--	--
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	<1.0	0.13	--	<25'	A	<1.0	0.08	--	<25'
Westbound Marshland Road	A	3.9	0.11	--	<25'	A	2.0	0.25	--	<25'
Southbound Cross Island Parkway Off-Ramp	B	11.3	0.06	--	<25'	C	16.5	0.23	--	25^{\prime}
Overall Intersection	A	2.1	0.33	--	--	A	3.5	0.36	--	--
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	4.2	0.10	--	<25'	A	2.0	0.09	--	<25'
Westbound Marshland Road	A	<1.0	0.08	--	<25'	A	<1.0	0.12	--	<25'
Northbound Cross Island Parkway Off-Ramp	B	12.3	0.16	--	<25'	C	15.6	0.50	--	75^{\prime}
Overall Intersection	A	4.1	0.33	--	--	A	7.1	0.36	--	--
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)										
Eastbound Point Comfort Road	E	57.8	0.86	115'	185'	E	69.0	0.99	70'	180'
Westbound Arrow Road	C	22.7	0.40	30'	70^{\prime}	C	33.0	0.70	160'	285'
Northbound Palmetto Bay Road	A	7.2	0.33	145'	215'	B	17.5	0.62	410'	465'
Southbound Palmetto Bay Road	B	11.2	0.62	325'	400'	B	18.8	0.63	335'	410'
Overall Intersection	B	14.6	0.79	---	---	C	22.8	0.88	---	---
Target Road \& Palmetto Bay Road (Signalized)										
Eastbound Target Road	D	42.2	0.33	45'	85'	E	62.5	0.79	170'	245'
Westbound Target Road	E	59.9	0.68	95'	155'	D	35.4	0.44	75^{\prime}	120'
Northbound Palmetto Bay Road	B	11.9	0.30	$120 '$	180'	B	14.8	0.53	355'	400'
Southbound Palmetto Bay Road	A	8.8	0.52	165'	225'	A	7.7	0.51	115'	$140{ }^{\prime}$
Overall Intersection	B	14.9	0.66	---	--	B	18.0	0.68	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Signalized)										
Eastbound Greenwood Drive	E	59.7	0.69	135'	180'	D	47.0	0.76	180'	230'
Westbound Business US 278	D	47.3	0.80	250'	$330{ }^{\prime}$	D	44.8	0.84	340'	430'
Northbound Pope Avenue	B	15.6	0.22	105'	180'	C	20.5	0.41	220'	340'
Southbound Palmetto Bay Road	B	10.8	0.38	155'	175'	B	10.6	0.41	145'	230'
Overall Intersection	C	26.1	0.58	---	---	C	27.6	0.64	---	---

DRAFT

Table 7: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)								
Eastbound Bluffton Parkway	A	6.7	<25'	215'	A	3.1	<25'	125'
Westbound Bluffton Parkway	A	5.8	<25'	215'	A	4.7	<25'	230'
Northbound Buckingham Plantation Drive	E	56.5	<25'	$135{ }^{\prime}$	D	48.1	<25'	125'
Southbound Buckingham Plantation Drive	B	18.7	<25'	$120 '$	C	26.2	<25'	200'
Overall Intersection	A	8.7	---	---	A	7.5	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)								
Eastbound US 278	B	13.8	50'	415'	B	14.6	45'	365'
Westbound US 278	B	14.2	30'	$350{ }^{\prime}$	B	19.5	105'	$670{ }^{\prime}$
Northbound Buckingham Plantation Drive	D	36.1	35'	$240{ }^{\prime}$	D	50.0	25^{\prime}	$120{ }^{\prime}$
Southbound Moss Creek Drive	C	33.4	<25'	135'	C	32.6	30'	220
Overall Intersection	B	16.4	---	---	B	19.0	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)								
Eastbound US 278	A	0.2	<25'	45'	A	0.4	<25'	70^{\prime}
Westbound US 278	A	0.2	<25'	40^{\prime}	A	0.4	<25'	75^{\prime}
Northbound Salt Marsh Drive	B	11.1	<25'	75^{\prime}	B	13.3	<25'	60^{\prime}
Southbound Moss Creek Village	A	8.8	<25'	85'	B	10.8	<25'	85'
Overall Intersection	A	0.6	---	---	A	0.7	---	---
US 278 \& Fording Island Road Extension (Unsignalized)								
Eastbound US 278	A	0.1	<25'	<25'	A	0.2	<25'	70'
Westbound US 278	A	0.2	<25'	<25'	A	0.3	<25'	40^{\prime}
Northbound Fording Island Road Extension	B	10.7	<25'	55'	B	13.7	<25'	60^{\prime}
Overall Intersection	A	0.2	---	---	A	0.4	---	-
US 278 \& Pinckney Wildlife Refuge (Unsignalized)								
Eastbound US 278	F	72.6	1405'	1690'	A	0.3	<25'	<25'
Westbound US 278	A	0.2	<25'	<25'	A	0.3	<25'	<25'
Northbound Pinckney Wildlife Refuge	C	20.9	<25'	<25'	A	0.6	<25'	<25'
Southbound Pinckney Wildlife Refuge	A	0.5	<25'	<25'	A	0.6	<25'	<25'
Overall Intersection	E	48.3	---	---	A	0.3	---	---
US 278 \& Crosstree Drive/Gateway Drive (Signalized)								
Eastbound US 278	D	50.1	1405'	1695'	A	6.1	30'	$430{ }^{\prime}$
Westbound US 278	A	4.1	<25'	$310{ }^{\prime}$	A	6.8	55^{\prime}	$525{ }^{\prime}$
Northbound Crosstree Drive	F	85.9	<25'	85'	D	48.3	<25'	140'
Southbound Gateway Drive	E	70.6	<25'	105'	D	41.1	<25'	95'
Overall Intersection	D	35.4	---	---	A	7.4	---	---

DRAFT

Table 7: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)								
Eastbound US 278	B	17.2	890'	1680'	B	17.3	150'	1095'
Westbound US 278	A	9.5	<25'	290'	D	35.5	1530'	1710'
Northbound Chamberlin Drive	D	37.0	<25'	<25'	E	74.2	<25'	35'
Southbound Squire Pope Road	B	15.9	<25'	$100 '$	D	44.3	45'	$210{ }^{\prime}$
Overall Intersection	B	14.8	---	---	C	28.7	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)								
Eastbound US 278	B	16.5	180'	1130'	C	21.1	135'	750'
Westbound US 278	B	14.2	60'	465'	F	105.6	1560'	1700'
Northbound Spanish Wells Road	D	44.0	45^{\prime}	140'	F	97.6	110'	$355{ }^{\prime}$
Southbound Wild Horse Road	E	61.5	50'	265'	E	68.9	55^{\prime}	200'
Overall Intersection	B	19.5	---	---	E	69.5	---	---
US 278 \& Gumtree Road (Signalized)								
Eastbound Business US 278	C	33.1	160'	655'	D	36.9	90'	445'
Westbound Business US 278	C	30.1	$115{ }^{\prime}$	400'	F	136.4	1310'	1615'
Northbound Gumtree Road	C	25.4	75^{\prime}	325'	C	31.6	95'	390'
Southbound Gumtree Road	E	66.0	145'	$670{ }^{\prime}$	F	164.0	595'	920'
Overall Intersection	D	35.4	---	---	F	99.9	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)								
Eastbound Business US 278	C	24.0	240'	1305'	B	17.8	70'	790
Westbound Business US 278	B	19.2	75^{\prime}	575'	F	117.3	970'	1305'
Northbound Jarvis Park Road	E	71.5	40^{\prime}	195'	F	471.4	205'	380'
Southbound Wilborn Road	D	48.4	80'	470'	D	53.2	40^{\prime}	280'
Overall Intersection	C	26.1	---	---	E	76.1	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)								
Eastbound Business US 278	B	15.2	185'	1190'	B	19.0	90'	785'
Westbound Business US 278	B	14.1	40^{\prime}	445'	F	164.3	1475'	1690'
Northbound Pembroke Drive	D	53.2	60^{\prime}	235'	F	389.8	$560{ }^{\prime}$	855'
Southbound Museum Street	C	33.7	<25'	80'	F	177.0	50^{\prime}	205'
Overall Intersection	B	18.5	---	---	F	124.2	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)								
Eastbound Business US 278	C	20.4	160'	1230'	C	29.4	95'	755'
Westbound Business US 278	B	14.8	40^{\prime}	330'	F	200.5	1430'	1690'
Northbound Indigo Run Drive	D	47.0	30^{\prime}	$100{ }^{\prime}$	E	72.8	45'	150'
Southbound Whooping Crane Way	D	42.3	50'	180'	E	67.4	75'	285'
Overall Intersection	C	22.4	---	---	F	111.5	---	---

DRAFT

Table 7: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (VISSIM)

Intersection/Approach	AM Peak Hour				PM Peak Hour			
	LOS	Delay	Average Queue	Maximum Queue	LOS	Delay	Average Queue	Maximum Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)								
Westbound US 278 Off-Ramp	A	4.2	<25'	95'	A	8.1	<25'	160'
Northbound Gumtree Road	A	9.9	<25'	70'	B	10.2	<25'	95'
Southbound Gumtree Road	A	0.2	<25'	<25'	A	0.2	<25'	<25'
Overall Intersection	A	2.3	---	---	A	4.7	---	---
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)								
Eastbound Honey Horn Drive	A	8.0	<25'	55'	A	8.6	<25'	80'
Southbound Gumtree Road	A	0.1	<25'	<25'	A	0.1	<25'	<25'
Overall Intersection	A	0.3	---	---	A	1.3	---	---
Marshland Road \& Spanish Wells Road (Unsignalized)								
Eastbound Marshland Road	A	0.5	<25'	30'	A	0.8	<25'	55^{\prime}
Westbound Marshland Road	A	0.4	<25'	<25'	A	0.9	<25'	50'
Southbound Spanish Wells Road	A	8.4	<25'	100'	A	7.8	<25'	95'
Overall Intersection	A	2.6	---	---	A	2.1	---	---
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.3	<25'	<25'	A	0.3	<25'	<25'
Westbound Marshland Road	A	0.5	<25'	50'	A	0.5	<25'	40'
Southbound Cross Island Parkway Off-Ramp	A	6.8	<25'	90^{\prime}	A	8.5	<25'	110^{\prime}
Overall Intersection	A	0.9	---	---	A	1.5	---	---
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)								
Eastbound Marshland Road	A	0.7	<25'	45'	A	0.8	<25'	30'
Westbound Marshland Road	A	0.6	<25'	40^{\prime}	A	0.5	<25'	<25'
Northbound Cross Island Parkway Off-Ramp	A	7.2	<25'	100'	B	10.1	25^{\prime}	180'
Overall Intersection	A	1.9	---	---	A	4.6	--	---
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)								
Eastbound Point Comfort Road	D	45.7	55'	235'	D	45.1	40'	205'
Westbound Arrow Road	C	20.3	<25'	80'	C	23.5	35'	215'
Northbound Palmetto Bay Road	A	6.8	<25'	$280{ }^{\prime}$	A	5.2	<25'	375'
Southbound Palmetto Bay Road	A	6.8	30'	445'	A	6.4	<25'	405'
Overall Intersection	B	10.9	---	---	B	10.3	---	---
Target Road \& Palmetto Bay Road (Signalized)								
Eastbound Target Road	D	45.7	<25'	145'	D	53.8	75^{\prime}	2301
Westbound Target Road	D	47.7	35^{\prime}	125'	C	33.4	30'	$120 '$
Northbound Palmetto Bay Road	A	9.7	30'	280'	B	10.6	55^{\prime}	$470{ }^{\prime}$
Southbound Palmetto Bay Road	A	3.8	<25'	385'	A	7.9	35'	$480{ }^{\prime}$
Overall Intersection	B	10.8	---	---	B	15.5	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Signalized)								
Eastbound Greenwood Drive	D	54.7	80'	265'	D	44.1	100'	$385{ }^{\prime}$
Westbound Business US 278	D	47.0	165'	625^{\prime}	D	40.1	225'	$780{ }^{\prime}$
Northbound Pope Avenue	B	11.7	<25'	185'	B	16.4	50^{\prime}	$335{ }^{\prime}$
Southbound Palmetto Bay Road	A	8.8	25^{\prime}	$270{ }^{\prime}$	B	10.9	30'	$320 '$
Overall Intersection	C	23.9	---	---	C	25.4	---	---

DRAFT

Table 8: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \& \text { ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
Bluffton Parkway \& Buckingham Plantation Drive (Signalized)										
Eastbound Bluffton Parkway	A	2.8	0.37	90'	125'	A	2.5	0.21	$50 '$	80'
Westbound Bluffton Parkway	A	6.0	0.18	65^{\prime}	100'	A	6.9	0.38	165'	235'
Northbound Buckingham Plantation Drive	E	61.9	0.36	30'	65^{\prime}	E	70.1	0.59	30'	65^{\prime}
Southbound Buckingham Plantation Drive	C	31.1	0.46	<25	60'	C	29.9	0.64	<25	90'
Overall Intersection	A	6.7	0.64	---	---	A	9.0	0.69	---	---
US 278 \& Buckingham Plantation Drive/Moss Creek Drive (Signalized)										
Eastbound US 278	B	15.5	0.54	370'	430'	B	17.9	0.65	$330{ }^{\prime}$	405'
Westbound US 278	B	15.4	0.36	215'	280'	C	25.5	0.73	605'	765'
Northbound Buckingham Plantation Drive	D	41.5	0.59	70^{\prime}	125'	D	54.5	0.36	50'	90'
Southbound Moss Creek Drive	D	47.9	0.52	40'	105'	E	57.7	0.77	85'	195'
Overall Intersection	B	18.6	0.63	---	---	C	24.9	0.81	---	---
US 278 \& Salt Marsh Drive/Moss Creek Village (Unsignalized)										
Eastbound US 278	A	<1.0	0.47		<25'	A	<1.0	0.40	--	<25'
Westbound US 278	A	<1.0	0.27	--	<25'	A	<1.0	0.52	--	<25'
Northbound Salt Marsh Drive	B	14.4	0.13	--	<25'	D	30.9	0.11	--	<25'
Southbound Moss Creek Village	B	13.7	0.14	--	<25'	D	26.2	0.24	--	25^{\prime}
Overall Intersection	A	0.6	0.50	--	--	A	0.9	0.58	--	--
US 278 \& Fording Island Road Extension (Unsignalized)										
Eastbound US 278	A	<1.0	0.60	--	<25'	A	<1.0	0.50	--	<25'
Westbound US 278	A	<1.0	0.36	--	<25'	A	<1.0	0.67	--	<25'
Northbound Fording Island Road Extension	F	>200	0.94	--	80'	F	>200	1.78	--	100'
Overall Intersection	A	2.9	0.62	--	--	A	6.0	0.68	--	--
US 278 \& Pinckney Wildlife Refuge (Unsignalized)										
Eastbound US 278	A	<1.0	0.61	--	<25'	A	<1.0	0.45	--	<25'
Westbound US 278	A	<1.0	0.34	--	<25'	A	<1.0	0.65	--	<25'
Northbound Pinckney Wildlife Refuge	C	21.5	0.05	--	<25'	C	15.9	0.03	--	<25'
Southbound Pinckney Wildlife Refuge	B	13.0	0.02	--	<25'	C	24.2	0.08	--	<25'
Overall Intersection	A	<1.0	0.65	--	--	A	<1.0	0.69	--	--
US 278 \& Crosstree Drive/Gateway Drive (Signalized)										
Eastbound US 278	A	7.8	0.71	485'	590'	A	7.7	0.54	325'	385'
Westbound US 278	A	2.1	0.39	25'	45'	A	2.2	0.76	65^{\prime}	55^{\prime}
Northbound Crosstree Drive	C	30.8	0.33	<25	40^{\prime}	D	47.6	0.51	40'	85'
Southbound Gateway Drive	D	40.6	0.27	<25	40^{\prime}	D	36.1	0.22	<25	45^{\prime}
Overall Intersection	A	6.3	0.72	---	---	A	5.4	0.77	---	---

DRAFT

Table 8: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 \& Chamberlin Drive/Squire Pope Road (Signalized)										
Eastbound US 278	C	33.0	1.01	940'	1935'	B	18.0	0.78	175'	925'
Westbound US 278	A	9.2	0.59	345'	320'	F	126.1	1.22	2200'	2295'
Northbound Chamberlin Drive	E	57.3	0.09	<25	<25	F	83.3	0.39	30'	70^{\prime}
Southbound Squire Pope Road	C	25.1	0.64	35^{\prime}	$70 '$	E	62.1	0.94	75^{\prime}	185'
Overall Intersection	C	25.1	0.93	---	---	E	78.1	1.08	---	---
US 278 \& Wild Horse Road/Spanish Wells Road (Signalized)										
Eastbound US 278	C	20.6	0.85	635'	485'	C	23.4	0.63	$350 '$	475'
Westbound US 278	B	16.8	0.59	255'	$325{ }^{\prime}$	A	6.7	0.68	$160 '$	135'
Northbound Spanish Wells Road	E	61.1	0.76	65'	120^{\prime}	E	75.1	0.80	155'	210'
Southbound Wild Horse Road	E	71.0	0.66	$120 '$	190'	E	63.5	0.60	90'	150'
Overall Intersection	C	24.2	0.84	--	---	B	19.7	0.66	---	---
US 278 \& Gumtree Road (Signalized)										
Eastbound Business US 278	C	23.3	0.79	485'	390'	D	53.2	0.58	475'	525'
Westbound Business US 278	D	41.9	0.90	215'	355'	D	50.7	1.05	1005'	1140'
Northbound Gumtree Road	D	36.5	0.87	150'	280'	D	48.6	0.92	245'	415'
Southbound Gumtree Road	F	109.3	1.03	$230{ }^{\prime}$	410'	F	85.4	0.89	265'	415'
Overall Intersection	D	40.9	0.80	---	---	E	55.2	0.90	---	---
Business US 278 \& Jarvis Park Road/Wilborn Road (Signalized)										
Eastbound Business US 278	B	15.8	0.80	260'	265'	C	21.0	0.79	$370{ }^{\prime}$	465'
Westbound Business US 278	B	10.8	0.52	$210{ }^{\prime}$	170'	B	18.4	0.95	225'	1535'
Northbound Jarvis Park Road	F	83.0	0.60	75'	135'	F	89.6	0.60	85'	145'
Southbound Wilborn Road	D	49.9	0.72	145'	215'	C	25.4	0.48	60'	110'
Overall Intersection	B	19.4	0.98	---	---	C	21.4	0.88	---	---
Business US 278 \& Pembroke Drive/Museum Street (Signalized)										
Eastbound Business US 278	B	10.8	0.82	260'	690'	C	30.5	0.59	645'	735'
Westbound Business US 278	C	31.0	0.46	380'	550'	B	13.8	0.86	75^{\prime}	1220'
Northbound Pembroke Drive	E	80.0	0.78	145'	255'	F	86.4	0.81	220'	310'
Southbound Museum Street	C	32.4	0.34	30'	70'	D	41.8	0.43	45'	90'
Overall Intersection	C	23.4	0.82	---	---	C	28.7	0.78	---	---
Business US 278 \& Indigo Run Drive/Whooping Crane Way (Signalized)										
Eastbound Business US 278	A	8.6	0.74	130'	160'	D	47.9	0.86	$730{ }^{\prime}$	810'
Westbound Business US 278	B	17.3	0.44	245'	355'	D	38.8	0.91	900'	1235'
Northbound Indigo Run Drive	E	59.6	0.43	50'	100'	E	69.6	0.71	130^{\prime}	205'
Southbound Whooping Crane Way	D	51.2	0.65	110'	155'	E	63.2	0.70	150'	195'
Overall Intersection	B	19.0	0.76	---	---	D	46.5	0.84	---	---

DRAFT

Table 8: Intersection Operating Conditions - 2023 No Widening Through Stoney Community (SYNCHRO)

Intersection/Approach	AM Peak Hour					PM Peak Hour				
	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue	LOS	Delay	$\begin{gathered} \text { Max } \\ \text { V/C } \\ \text { \& ICU } \end{gathered}$	50th \% Queue	95th \% Queue
US 278 Off-Ramp \& Gumtree Road (Unsignalized)										
Westbound US 278 Off-Ramp	F	>200	--	--	--	F	>200	--	--	--
Northbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.02	--	<25'
Southbound Gumtree Road	A	<1.0	0.00	--	<25'	A	<1.0	0.12	--	<25'
Overall Intersection	F	>200	0.25	--	--	F	>200	0.25	--	--
US 278 On-Ramp/Gumtree Road \& Honey Horn Drive (Unsignalized)										
Eastbound Honey Horn Drive	B	10.5	0.02	--	<25'	B	11.1	0.08	--	<25'
Southbound Gumtree Road	A	<1.0	0.24	--	<25'	A	<1.0	0.24	--	<25'
Overall Intersection	A	0.3	0.29	--	--	A	1.3	0.30	--	--
Marshland Road \& Spanish Wells Road (Unsignalized)										
Eastbound Marshland Road	A	1.1	0.04	--	<25'	A	2.9	0.08	--	<25'
Westbound Marshland Road	A	<1.0	0.11	--	<25'	A	<1.0	0.30	--	<25'
Southbound Spanish Wells Road	B	13.0	0.28	--	30'	C	15.3	0.26	--	25^{\prime}
Overall Intersection	A	4.0	0.30	--	--	A	3.5	0.46	--	--
Marshland Road \& Southbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	<1.0	0.13	--	<25'	A	<1.0	0.08	--	<25'
Westbound Marshland Road	A	3.9	0.11	--	<25'	A	2.0	0.25	--	<25'
Southbound Cross Island Parkway Off-Ramp	B	11.3	0.06	--	<25'	C	16.5	0.23	--	25^{\prime}
Overall Intersection	A	2.1	0.33	--	--	A	3.5	0.36	--	--
Marshland Road \& Northbound Cross Island Parkway Ramps (Unsignalized)										
Eastbound Marshland Road	A	4.2	0.10	--	<25'	A	2.0	0.09	--	<25'
Westbound Marshland Road	A	<1.0	0.08	--	<25'	A	<1.0	0.12	--	<25'
Northbound Cross Island Parkway Off-Ramp	B	12.3	0.16	--	<25'	C	15.6	0.50	--	75^{\prime}
Overall Intersection	A	4.1	0.33	--	--	A	7.1	0.36	--	--
Point Comfort Road/Arrow Road \& Palmetto Bay Road (Signalized)										
Eastbound Point Comfort Road	E	57.8	0.86	115'	185'	E	69.0	0.99	70'	180'
Westbound Arrow Road	C	22.7	0.40	30'	70^{\prime}	C	33.0	0.70	160'	285'
Northbound Palmetto Bay Road	A	7.2	0.33	145'	215'	B	17.5	0.62	410'	465'
Southbound Palmetto Bay Road	B	11.2	0.62	325'	400'	B	18.8	0.63	335'	410'
Overall Intersection	B	14.6	0.79	---	---	C	22.8	0.88	---	---
Target Road \& Palmetto Bay Road (Signalized)										
Eastbound Target Road	D	42.2	0.33	45'	85'	E	62.5	0.79	170'	245'
Westbound Target Road	E	59.9	0.68	95^{\prime}	155'	D	35.4	0.44	75^{\prime}	$120 '$
Northbound Palmetto Bay Road	B	11.9	0.30	120^{\prime}	180'	B	14.8	0.53	$355 '$	400'
Southbound Palmetto Bay Road	A	8.8	0.52	165'	225'	A	7.7	0.51	115'	140'
Overall Intersection	B	14.9	0.66	---	---	B	18.0	0.68	---	---
Greenwood Drive/Business US 278 \& Pope Avenue/Palmetto Bay Road (Signalized)										
Eastbound Greenwood Drive	E	59.7	0.69	135'	180'	D	47.0	0.76	180'	230'
Westbound Business US 278	D	47.3	0.80	$250 '$	3301	D	44.8	0.84	$340 '$	4301
Northbound Pope Avenue	B	15.6	0.22	105'	180'	C	20.5	0.41	220'	$340{ }^{\prime}$
Southbound Palmetto Bay Road	B	10.8	0.38	155'	175'	B	10.6	0.41	145'	230'
Overall Intersection	C	26.1	0.58	---	---	C	27.6	0.64	---	---

[^0]: ${ }^{1}$ Hilton Head Island Chamber of Commerce 2https://onthemap.ces.census.gov/

[^1]: 3 https:// sc dottraffic data.d rakewell.com/public multino dema p.asp

[^2]: Figure 72: US 278 (East of Jenkins Island Road) Historical and Forecasted AADT

[^3]: 4 https:// summitc ountyc o.gov/ImageRepository/Doc ument? doc umentID=31594

[^4]: 5 https:// summitc ountyc o.gov/ImageRepository/Doc ument? doc umentID=31594

